Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of mu...
Main Authors: | , , |
---|---|
Format: | Online |
Language: | eng spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2020
|
Subjects: | |
Online Access: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853 |
_version_ | 1801706087205830656 |
---|---|
author | Lamos-Díaz, Henry Puentes-Garzón, David Esteban Zarate-Caicedo, Diego Alejandro |
author_facet | Lamos-Díaz, Henry Puentes-Garzón, David Esteban Zarate-Caicedo, Diego Alejandro |
author_sort | Lamos-Díaz, Henry |
collection | OJS |
description | The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of multiple machine learning algorithms for cocoa yield prediction and influencing factors identification. The Support Vector Machines (SVM) and Ensemble Learning Models (Random Forests, Gradient Boosting) are compared with Least Absolute Shrinkage and Selection Operator (LASSO) regression models. The considered predictors were climate conditions, cocoa variety, fertilization level and sun exposition in an experimental crop located in Rionegro, Santander. Results showed that Gradient Boosting is the best prediction alternative with Coefficient of determination (R2) = 68%, Mean Absolute Error (MAE) = 13.32, and Root Mean Square Error (RMSE) = 20.41. The crop yield variability is explained mainly by the radiation one month before harvest, the accumulated rainfall on the harvest month, and the temperature one month before harvest. Likewise, the crop yields are evaluated based on the kind of sun exposure, and it was found that radiation one month before harvest is the most influential factor in shade-grown plants. On the other hand, rainfall and soil moisture are determining variables in sun-grown plants, which is associated with the water requirements. These results suggest a differentiated management for crops depending on the kind of sun exposure to avoid compromising productivity, since there is no significant difference in the yield of both agricultural managements. |
format | Online |
id | oai:oai.revistas.uptc.edu.co:article-10853 |
institution | Revista Facultad de Ingeniería |
language | eng spa |
publishDate | 2020 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | ojs |
spelling | oai:oai.revistas.uptc.edu.co:article-108532022-06-15T15:57:49Z Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia Comparación de modelos de aprendizaje automático para la predicción de rendimientos agrícolas en cultivos de cacao en Santander, Colombia Lamos-Díaz, Henry Puentes-Garzón, David Esteban Zarate-Caicedo, Diego Alejandro agricultural-yield agroforestry-system cocoa machine-learning prediction productivity aprendizaje-automático cacao predicción productividad rendimientos-agrícolas sistemas-agroforestales The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of multiple machine learning algorithms for cocoa yield prediction and influencing factors identification. The Support Vector Machines (SVM) and Ensemble Learning Models (Random Forests, Gradient Boosting) are compared with Least Absolute Shrinkage and Selection Operator (LASSO) regression models. The considered predictors were climate conditions, cocoa variety, fertilization level and sun exposition in an experimental crop located in Rionegro, Santander. Results showed that Gradient Boosting is the best prediction alternative with Coefficient of determination (R2) = 68%, Mean Absolute Error (MAE) = 13.32, and Root Mean Square Error (RMSE) = 20.41. The crop yield variability is explained mainly by the radiation one month before harvest, the accumulated rainfall on the harvest month, and the temperature one month before harvest. Likewise, the crop yields are evaluated based on the kind of sun exposure, and it was found that radiation one month before harvest is the most influential factor in shade-grown plants. On the other hand, rainfall and soil moisture are determining variables in sun-grown plants, which is associated with the water requirements. These results suggest a differentiated management for crops depending on the kind of sun exposure to avoid compromising productivity, since there is no significant difference in the yield of both agricultural managements. La identificación de los factores que influyen en el rendimiento (kg·ha-1) de un cultivo provee información esencial para la toma de decisiones orientadas al mejoramiento y predicción de la productividad, proporcionando posibilidades a los agricultores para mejorar sus ingresos económicos. En este estudio, se presenta la aplicación y comparación de diversos algoritmos de aprendizaje automático para la predicción del rendimiento agrícola en cultivos de cacao y la identificación de los factores que influyen sobre éste. Se comparan los algoritmos de máquinas de soporte vectorial (SVM), modelos ensamblados (Random Forest, Gradient Boosting) y el modelo de regresión Least Absolute Shrinkage and Selection Operator (LASSO). Los predictores considerados fueron: condiciones climáticas de la región, variedad de cacao, nivel de fertilización y exposición al sol para un cultivo experimental ubicado en Rionegro, Santander. Los resultados identifican a Gradient Boosting como la mejor alternativa de pronóstico con un coeficiente de determinación (R2) = 68 %, Error Absoluto Medio (MAE) = 13.32 y Raíz Cuadrada del Error Medio (RMSE) = 20.41. La variabilidad del rendimiento del cultivo es explicada principalmente por la radiación y la temperatura un mes previo a la cosecha, además de las lluvias acumuladas el mes de la cosecha. De igual manera, los rendimientos de los cultivos son evaluados con base en el tipo de exposición al sol, encontrando que la radiación un mes previo a la cosecha es el factor más influyente para los cultivos bajo sombra. Por otro lado, la lluvia y la humedad son las variables determinantes en las plantas con exposición plena a sol, lo que está asociado a los requerimientos hídricos. Estos resultados sugieren un manejo diferenciado de los cultivos dependiendo del tipo de exposición, sin tener que comprometer la productividad, dado que no se evidencia diferencia significativa en los rendimientos de ambos manejos agrícolas. Universidad Pedagógica y Tecnológica de Colombia 2020-05-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf application/pdf application/xml https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853 10.19053/01211129.v29.n54.2020.10853 Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10853 Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e10853 2357-5328 0121-1129 eng spa https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9281 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9282 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9507 Copyright (c) 2020 Henry Lamos-Díaz; David-Esteban Puentes-Garzón; Diego-Alejandro Zarate-Caicedo |
spellingShingle | agricultural-yield agroforestry-system cocoa machine-learning prediction productivity aprendizaje-automático cacao predicción productividad rendimientos-agrícolas sistemas-agroforestales Lamos-Díaz, Henry Puentes-Garzón, David Esteban Zarate-Caicedo, Diego Alejandro Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title | Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title_alt | Comparación de modelos de aprendizaje automático para la predicción de rendimientos agrícolas en cultivos de cacao en Santander, Colombia |
title_full | Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title_fullStr | Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title_full_unstemmed | Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title_short | Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia |
title_sort | comparison between machine learning models for yield forecast in cocoa crops in santander colombia |
topic | agricultural-yield agroforestry-system cocoa machine-learning prediction productivity aprendizaje-automático cacao predicción productividad rendimientos-agrícolas sistemas-agroforestales |
topic_facet | agricultural-yield agroforestry-system cocoa machine-learning prediction productivity aprendizaje-automático cacao predicción productividad rendimientos-agrícolas sistemas-agroforestales |
url | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853 |
work_keys_str_mv | AT lamosdiazhenry comparisonbetweenmachinelearningmodelsforyieldforecastincocoacropsinsantandercolombia AT puentesgarzondavidesteban comparisonbetweenmachinelearningmodelsforyieldforecastincocoacropsinsantandercolombia AT zaratecaicedodiegoalejandro comparisonbetweenmachinelearningmodelsforyieldforecastincocoacropsinsantandercolombia AT lamosdiazhenry comparaciondemodelosdeaprendizajeautomaticoparalaprediccionderendimientosagricolasencultivosdecacaoensantandercolombia AT puentesgarzondavidesteban comparaciondemodelosdeaprendizajeautomaticoparalaprediccionderendimientosagricolasencultivosdecacaoensantandercolombia AT zaratecaicedodiegoalejandro comparaciondemodelosdeaprendizajeautomaticoparalaprediccionderendimientosagricolasencultivosdecacaoensantandercolombia |