Common Reactions of Furfural to scalable processes of Residual Biomass

Energy and the environment will always play key roles in society. The climate emergency cannot be ruled out to enable the transition for a clean energy future. Currently, non-renewable energy resources are declining, therefore is important to continuously explore renewable resources. Biomass is a re...

Full description

Bibliographic Details
Main Authors: Rodríguez-Montaña, Alejandra, Brijaldo, Maria H., Rache, Leidy Y., Silva, Ludmila P. C., Esteves, Laura M.
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2020
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/10973
_version_ 1801706346416963584
author Rodríguez-Montaña, Alejandra
Brijaldo, Maria H.
Rache, Leidy Y.
Silva, Ludmila P. C.
Esteves, Laura M.
author_facet Rodríguez-Montaña, Alejandra
Brijaldo, Maria H.
Rache, Leidy Y.
Silva, Ludmila P. C.
Esteves, Laura M.
author_sort Rodríguez-Montaña, Alejandra
collection OJS
description Energy and the environment will always play key roles in society. The climate emergency cannot be ruled out to enable the transition for a clean energy future. Currently, non-renewable energy resources are declining, therefore is important to continuously explore renewable resources. Biomass is a renewable resource that can be applied to reduce climate changes and to accomplhish emission policies. Cellulose is the most abundant type of biomass worldwide, which can be transformed into biofuels and potential building block platform molecules (e.g furfural) throughout biological or chemical methods. Furfural can be synthetized from cellulose using hydrolysis and dehydration reactions. Furfural has a furan ring and carbonyl functional group which makes it an important intermediary to produce higher value-added molecules at  industrial level. These molecules include gasoline, diesel and jet fuel. However, furfural can also be transformed by hydrogenation, oxidation, decarboxylation and condensation reactions. The selective hydrogenation of furfural produces furfuryl alcohol, an important industrial compound, which is widely employed in the production of resins, fibers, and is considered an essential product for pharmaceutical applications. On the other hand, the oxidation of furfural produces furoic acid which is appliedin the agrochemical industry, where it is commonly transformed to furoyl chloride which is finally  used in the production of drugs and insecticides. The oxidation and reduction of furfural can carry out through heterogeneous and homogeneous catalysis, and biocatalysis.  Selectivity is an important issue in furfural hydrogenation and oxidation reactions since different products can be obtained by using monometallic or bimetallic catalysts and/or different catalyst supports. In biocatalysis approach, different enzymes, complete cells, tools of modern biotechnology, DNA sequencing, regulation of metabolic networks, overexpression of genes that encode enzymes of interest and optimization of the cellular properties of the microorganism are used. Herein, a review on the current status of furfuryl alcohol and furoic acid production from furfural by heterogeneous catalysis and biocatalysis has been studied. The stability, selectivity and activity of catalystsalong with the different furfural oxidation and reduction conditions have been pointed out. Additionally, the main enzymes, microorganisms and mechanism involved in the furfural degradation process have also been discussed.
format Online
id oai:oai.revistas.uptc.edu.co:article-10973
institution Revista Ciencia en Desarrollo
language spa
publishDate 2020
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-109732022-06-15T16:59:03Z Common Reactions of Furfural to scalable processes of Residual Biomass Reacciones comunes de Furfural en procesos escalables de Biomasa Residual Rodríguez-Montaña, Alejandra Brijaldo, Maria H. Rache, Leidy Y. Silva, Ludmila P. C. Esteves, Laura M. Furfural Biomasa Residual Furfural Residual Biomass Energy and the environment will always play key roles in society. The climate emergency cannot be ruled out to enable the transition for a clean energy future. Currently, non-renewable energy resources are declining, therefore is important to continuously explore renewable resources. Biomass is a renewable resource that can be applied to reduce climate changes and to accomplhish emission policies. Cellulose is the most abundant type of biomass worldwide, which can be transformed into biofuels and potential building block platform molecules (e.g furfural) throughout biological or chemical methods. Furfural can be synthetized from cellulose using hydrolysis and dehydration reactions. Furfural has a furan ring and carbonyl functional group which makes it an important intermediary to produce higher value-added molecules at  industrial level. These molecules include gasoline, diesel and jet fuel. However, furfural can also be transformed by hydrogenation, oxidation, decarboxylation and condensation reactions. The selective hydrogenation of furfural produces furfuryl alcohol, an important industrial compound, which is widely employed in the production of resins, fibers, and is considered an essential product for pharmaceutical applications. On the other hand, the oxidation of furfural produces furoic acid which is appliedin the agrochemical industry, where it is commonly transformed to furoyl chloride which is finally  used in the production of drugs and insecticides. The oxidation and reduction of furfural can carry out through heterogeneous and homogeneous catalysis, and biocatalysis.  Selectivity is an important issue in furfural hydrogenation and oxidation reactions since different products can be obtained by using monometallic or bimetallic catalysts and/or different catalyst supports. In biocatalysis approach, different enzymes, complete cells, tools of modern biotechnology, DNA sequencing, regulation of metabolic networks, overexpression of genes that encode enzymes of interest and optimization of the cellular properties of the microorganism are used. Herein, a review on the current status of furfuryl alcohol and furoic acid production from furfural by heterogeneous catalysis and biocatalysis has been studied. The stability, selectivity and activity of catalystsalong with the different furfural oxidation and reduction conditions have been pointed out. Additionally, the main enzymes, microorganisms and mechanism involved in the furfural degradation process have also been discussed. La energía y el medio ambiente siempre desempeñarán papeles clave en la sociedad. No se puede descartar la emergencia climática para permitir la transición hacia un futuro de energía limpia. Actualmente, los recursos energéticos no renovables están disminuyendo, por lo tanto, es importante explorar continuamente los recursos renovables. La biomasa es un recurso renovable que se puede aplicar para reducir los cambios climáticos y lograr políticas de emisión. La celulosa es el tipo de biomasa más abundante en todo el mundo, que se puede transformar en biocombustibles y moléculas de plataforma de bloques de construcción potenciales (por ejemplo, furfural) a través de métodos biológicos o químicos. El furfural se puede sintetizar a partir de celulosa utilizando reacciones de hidrólisis y deshidratación. Furfural tiene un anillo furano y un grupo funcional carbonilo que lo convierte en un intermediario importante para producir moléculas de mayor valor agregado a nivel industrial. Estas moléculas incluyen gasolina, diesel y combustible para aviones. Sin embargo, el furfural también se puede transformar por hidrogenación, oxidación, descarboxilación y reacciones de condensación. La hidrogenación selectiva de furfural produce alcohol furfurílico, un importante compuesto industrial, que se emplea ampliamente en la producción de resinas y fibras, y se considera un producto esencial para aplicaciones farmacéuticas. Por otro lado, la oxidación del furfural produce ácido furoico que se aplica en la industria agroquímica, donde comúnmente se transforma en cloruro de furoilo que finalmente se usa en la producción de drogas e insecticidas. La oxidación y reducción de furfural puede llevarse a cabo mediante catálisis heterogénea y homogénea, y biocatálisis. La selectividad es un tema importante en las reacciones de hidrogenación y oxidación furfural ya que se pueden obtener diferentes productos usando catalizadores monometálicos o bimetálicos y / o diferentes soportes de catalizador. En el enfoque de biocatálisis, se utilizan diferentes enzimas, células completas, herramientas de biotecnología moderna, secuenciación de ADN, regulación de redes metabólicas, sobreexpresión de genes que codifican enzimas de interés y optimización de las propiedades celulares del microorganismo. Aquí, se ha estudiado una revisión sobre el estado actual de la producción de alcohol furfurílico y ácido furoico a partir de furfural por catálisis y biocatálisis heterogéneas. Se ha señalado la estabilidad, selectividad y actividad de los catalizadores junto con las diferentes condiciones de oxidación y reducción de furfural. Además, también se han discutido las principales enzimas, microorganismos y mecanismos involucrados en el proceso de degradación furfural. Universidad Pedagógica y Tecnológica de Colombia 2020-05-04 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/10973 10.19053/01217488.v11.n1.2020.10973 Ciencia En Desarrollo; Vol. 11 No. 1 (2020): Vol 11, Núm.1 (2020): Enero-Junio; 63-80 Ciencia en Desarrollo; Vol. 11 Núm. 1 (2020): Vol 11, Núm.1 (2020): Enero-Junio; 63-80 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/10973/9689 Derechos de autor 2020 CIENCIA EN DESARROLLO
spellingShingle Furfural
Biomasa Residual
Furfural
Residual Biomass
Rodríguez-Montaña, Alejandra
Brijaldo, Maria H.
Rache, Leidy Y.
Silva, Ludmila P. C.
Esteves, Laura M.
Common Reactions of Furfural to scalable processes of Residual Biomass
title Common Reactions of Furfural to scalable processes of Residual Biomass
title_alt Reacciones comunes de Furfural en procesos escalables de Biomasa Residual
title_full Common Reactions of Furfural to scalable processes of Residual Biomass
title_fullStr Common Reactions of Furfural to scalable processes of Residual Biomass
title_full_unstemmed Common Reactions of Furfural to scalable processes of Residual Biomass
title_short Common Reactions of Furfural to scalable processes of Residual Biomass
title_sort common reactions of furfural to scalable processes of residual biomass
topic Furfural
Biomasa Residual
Furfural
Residual Biomass
topic_facet Furfural
Biomasa Residual
Furfural
Residual Biomass
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/10973
work_keys_str_mv AT rodriguezmontanaalejandra commonreactionsoffurfuraltoscalableprocessesofresidualbiomass
AT brijaldomariah commonreactionsoffurfuraltoscalableprocessesofresidualbiomass
AT racheleidyy commonreactionsoffurfuraltoscalableprocessesofresidualbiomass
AT silvaludmilapc commonreactionsoffurfuraltoscalableprocessesofresidualbiomass
AT esteveslauram commonreactionsoffurfuraltoscalableprocessesofresidualbiomass
AT rodriguezmontanaalejandra reaccionescomunesdefurfuralenprocesosescalablesdebiomasaresidual
AT brijaldomariah reaccionescomunesdefurfuralenprocesosescalablesdebiomasaresidual
AT racheleidyy reaccionescomunesdefurfuralenprocesosescalablesdebiomasaresidual
AT silvaludmilapc reaccionescomunesdefurfuralenprocesosescalablesdebiomasaresidual
AT esteveslauram reaccionescomunesdefurfuralenprocesosescalablesdebiomasaresidual