Allium cepa L. responses when Gaeolaelaps aculeifer Canestrini and Parasitus bituberosus Karg are used to control Thrips tabaci Lindeman

Thrips tabaci Lindemann is the main insect pest of Allium cepa L., causing both direct and indirect damage to crops. T. tabaci is controlled by applying chemically synthesized products; however, this insect has already developed resistance to organophosphates, carbamates, and pyrethroids. This study...

Full description

Bibliographic Details
Main Authors: Castro-López, Mayerly Alejandra, Martínez-Osorio, John Wilson
Format: Online
Language:eng
Published: Sociedad Colombiana de Ciencias Hortícolas-SCCH and Universidad Pedagógica y Tecnológica de Colombia-UPTC 2021
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/11001
Description
Summary:Thrips tabaci Lindemann is the main insect pest of Allium cepa L., causing both direct and indirect damage to crops. T. tabaci is controlled by applying chemically synthesized products; however, this insect has already developed resistance to organophosphates, carbamates, and pyrethroids. This study evaluated the effect of soil predatory mites (Gaeolaelaps aculeifer Canestrini and Parasitus bituberosus Karg) on the population density of T. tabaci in potted bulb onion (Allium cepa L.) plants and on the response of physiological variables related to photosynthesis and plant development. Seven treatments were evaluated that released 50, 75 or 100 G. aculeifer or P. bituberosus adults, along with a control without predatory mites. Significant differences (P≤0.05) in the population density of T. tabaci were observed for 13 weeks, with a 78% reduction of individuals in the presence of G. aculeifer and a 72% reduction with P. bituberosus, regardless of mite density, as compared to the control. In addition, the relative chlorophyll index, foliar area, dry leaf weight and fresh bulb weight increased, as compared to the control. The application of 100 individuals of the two species recorded the highest values in the evaluated variables. These results indicate that G. aculeifer and P. bituberosus controls should be explored as an option for integrated T. tabaci management.