Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá

Precipitation directly affects the water supply of river basins and its prediction becomes the main objective in different investigations. However, historical records often show missing data due to instrumental, technical or human drawbacks. This limitation must be solved to avoid errors in subseque...

Full description

Bibliographic Details
Main Authors: Bello, Angie Milena, Cuta, Julián Andrés, García, Ehidy Karime
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia - UPTC 2020
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/12209
_version_ 1801706690843770880
author Bello, Angie Milena
Cuta, Julián Andrés
García, Ehidy Karime
author_facet Bello, Angie Milena
Cuta, Julián Andrés
García, Ehidy Karime
author_sort Bello, Angie Milena
collection OJS
description Precipitation directly affects the water supply of river basins and its prediction becomes the main objective in different investigations. However, historical records often show missing data due to instrumental, technical or human drawbacks. This limitation must be solved to avoid errors in subsequent Analysis. This proposal deal with a similar problem for a data set about precipitation collected in the central part of Boyacá along the years 1974-2013. The performance of the imputation mechanisms of loss MCAR, MAR and MNAR was evaluated. All of them were implemented each one under either a multiple imputation with a random approach based on an allocation by the K-Nearest Neighbors method with spatial focus and an imputation by the Kalman smoothing method time focused approach. We measured the convergence of the descriptive statistics of the imputed value and the original value, and additionally, we compared the graphical adjustments and their probability distributions. Amelia was suggested as a better performance of imputation technique jointly with a gamma distribution associated to the missing data.
format Online
id oai:oai.revistas.uptc.edu.co:article-12209
institution Revista Ingeniería, Investigación y Desarrollo
language spa
publishDate 2020
publisher Universidad Pedagógica y Tecnológica de Colombia - UPTC
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-122092021-08-03T19:46:28Z Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá TÉCNICAS DE IMPUTACIÓN PARA DATOS DE PRECIPITACIÓN MÁXIMA MENSUAL EN LA ZONA CENTRAL DE BOYACÁ Bello, Angie Milena Cuta, Julián Andrés García, Ehidy Karime Multiple imputation precipitation R-software temporal series Boyacá Imputación múltiple Precipitación R series temporales Boyacá Precipitation directly affects the water supply of river basins and its prediction becomes the main objective in different investigations. However, historical records often show missing data due to instrumental, technical or human drawbacks. This limitation must be solved to avoid errors in subsequent Analysis. This proposal deal with a similar problem for a data set about precipitation collected in the central part of Boyacá along the years 1974-2013. The performance of the imputation mechanisms of loss MCAR, MAR and MNAR was evaluated. All of them were implemented each one under either a multiple imputation with a random approach based on an allocation by the K-Nearest Neighbors method with spatial focus and an imputation by the Kalman smoothing method time focused approach. We measured the convergence of the descriptive statistics of the imputed value and the original value, and additionally, we compared the graphical adjustments and their probability distributions. Amelia was suggested as a better performance of imputation technique jointly with a gamma distribution associated to the missing data. La precipitación se encuentra relacionada directamente con el suministro de agua de las cuencas fluviales, convirtiéndose su predicción en un objetivo de estudio en diferentes investigaciones. Sin embargo, los registros históricos a menudo muestran datos faltantes debido a fallas instrumentales, técnicos o humanos. Esta limitación impacta directamente los resultados de los análisis estadísticos que puedan ser realizados posteriormente. Esta investigación aborda este problema para un conjunto de datos con características similares, recopilados en la parte central del departamento de Boyacá - Colombia para el período 1974-2013. Se evaluó el desempeño de los mecanismos de imputación de pérdida MCAR, MAR o MNAR, cada uno de estos se implementó usando una imputación múltiple con un enfoque aleatorio, una asignación por el método de K-Nearest Neighbors con enfoque espacial y una imputación por el método de suavizado de Kalman con enfoque temporal. Se midió la convergencia de los estadísticos descriptivos del valor imputado y el valor original y se realizó la comparación de los ajustes gráficos y sus distribuciones de probabilidad, sugiriendo un mejor ajuste usando la imputación múltiple Amelia en conjunto con un ajuste a una distribución gamma para los datos faltantes en el conjunto de datos de referencia. Universidad Pedagógica y Tecnológica de Colombia - UPTC 2020-12-09 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/12209 10.19053/1900771X.v19.n1.2019.12209 Ingeniería Investigación y Desarrollo; Vol. 19 No. 1 (2019): Revista Ingeniería Investigación y Desarrollo; 64-79 Ingeniería Investigación y Desarrollo; Vol. 19 Núm. 1 (2019): Enero - Junio; 64-79 2422-4324 1900-771X spa https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/12209/9961
spellingShingle Multiple imputation
precipitation
R-software
temporal series
Boyacá
Imputación múltiple
Precipitación
R
series temporales
Boyacá
Bello, Angie Milena
Cuta, Julián Andrés
García, Ehidy Karime
Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title_alt TÉCNICAS DE IMPUTACIÓN PARA DATOS DE PRECIPITACIÓN MÁXIMA MENSUAL EN LA ZONA CENTRAL DE BOYACÁ
title_full Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title_fullStr Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title_full_unstemmed Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title_short Imputation techniques applied in a maximum monthly precipitation data in the central zone of Boyacá
title_sort imputation techniques applied in a maximum monthly precipitation data in the central zone of boyaca
topic Multiple imputation
precipitation
R-software
temporal series
Boyacá
Imputación múltiple
Precipitación
R
series temporales
Boyacá
topic_facet Multiple imputation
precipitation
R-software
temporal series
Boyacá
Imputación múltiple
Precipitación
R
series temporales
Boyacá
url https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/12209
work_keys_str_mv AT belloangiemilena imputationtechniquesappliedinamaximummonthlyprecipitationdatainthecentralzoneofboyaca
AT cutajulianandres imputationtechniquesappliedinamaximummonthlyprecipitationdatainthecentralzoneofboyaca
AT garciaehidykarime imputationtechniquesappliedinamaximummonthlyprecipitationdatainthecentralzoneofboyaca
AT belloangiemilena tecnicasdeimputacionparadatosdeprecipitacionmaximamensualenlazonacentraldeboyaca
AT cutajulianandres tecnicasdeimputacionparadatosdeprecipitacionmaximamensualenlazonacentraldeboyaca
AT garciaehidykarime tecnicasdeimputacionparadatosdeprecipitacionmaximamensualenlazonacentraldeboyaca