Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure

This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wave...

Full description

Saved in:
Bibliographic Details
Main Authors: Urgilés, Pablo, Inga-Ortega, Juan, Peralta, Arturo, Ortega, Andrés
Format: Online
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2021
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1801706092189712384
author Urgilés, Pablo
Inga-Ortega, Juan
Peralta, Arturo
Ortega, Andrés
author_facet Urgilés, Pablo
Inga-Ortega, Juan
Peralta, Arturo
Ortega, Andrés
author_sort Urgilés, Pablo
collection OJS
description This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wavelet-based neural networks (WNN) and potential polynomials of degree one (P1P) has been performed. The correlation of each prediction method is analyzed, as well as the behavior of the Mean Square Error (MSE), to finally establish if there is an imbalance in the computational cost through the Big-O analysis and the executing time. The quantitative results of the MSE are below 0.05% for ANN predictions and they use a high computational cost. For P1P, errors around 1.2% are presented, showing as a low computational consumption prediction method but mainly applicable for a short-term analysis. This work is given in response to the need to establish a platform to take advantage of the smart metering structure through the prediction of electricity consumption profile, with the objective of developing a plan for maintenance and management of electricity demand to reduce operating costs from the final consumer to the distribution network operator. For the analysis of projections on the electrical load profile, the statistical characteristics of the consumption are considered to select the prediction algorithms according to the number of days to be projected using data from any of the smart meters, which can be monitored in an electrical network oriented to Smart Grids.
format Online
id oai:oai.revistas.uptc.edu.co:article-12772
institution Revista Facultad de Ingeniería
language eng
publishDate 2021
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-127722022-06-15T15:52:54Z Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure Predicción de perfiles de consumo eléctrico usando polinomios potenciales de grado uno y redes neuronales artificiales en la infraestructura de medición inteligente Urgilés, Pablo Inga-Ortega, Juan Peralta, Arturo Ortega, Andrés AMI medición inteligente P1P predicción de consumo eléctrico WNN AMI electricity consumption prediction P1P smart metering WNN This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wavelet-based neural networks (WNN) and potential polynomials of degree one (P1P) has been performed. The correlation of each prediction method is analyzed, as well as the behavior of the Mean Square Error (MSE), to finally establish if there is an imbalance in the computational cost through the Big-O analysis and the executing time. The quantitative results of the MSE are below 0.05% for ANN predictions and they use a high computational cost. For P1P, errors around 1.2% are presented, showing as a low computational consumption prediction method but mainly applicable for a short-term analysis. This work is given in response to the need to establish a platform to take advantage of the smart metering structure through the prediction of electricity consumption profile, with the objective of developing a plan for maintenance and management of electricity demand to reduce operating costs from the final consumer to the distribution network operator. For the analysis of projections on the electrical load profile, the statistical characteristics of the consumption are considered to select the prediction algorithms according to the number of days to be projected using data from any of the smart meters, which can be monitored in an electrical network oriented to Smart Grids. Este trabajo analiza métodos y algoritmos de predicción del comportamiento de consumo eléctrico basados en redes neuronales, usando datos obtenidos de la infraestructura de medición avanzada (AMI) de una institución educativa. También, se ha realizado un contraste entre el uso de redes neuronales convencionales (ANN), redes neuronales basadas en wavelets (WNN) y los polinomios potenciales de grado uno (P1P). Se analiza la correlación de cada método de predicción, así como el comportamiento del error cuadrático medio (MSE) para finalmente establecer si existe un desbalance en el coste computacional a través del análisis de Big-O y el tiempo de ejecución. Los resultados cuantitativos del error MSE están por debajo del 0,05% para predicciones con ANN y usan un alto costo computacional. Para P1P se presentan errores alrededor del 1,2% mostrando como método de predicción de bajo consumo computacional pero aplicable de forma principal para un análisis a corto plazo. Este trabajo se da en respuesta a la necesidad de establecer una plataforma que permita aprovechar la estructura de medición inteligente, a través de la predicción de perfil de consumo eléctrico con el objetivo de elaborar una planificación de mantenimiento y gestión de la demanda eléctrica para reducir costos de operación desde el consumidor final hasta el gestor de la distribución de energía eléctrica. Para el análisis de las proyecciones sobre el perfil de carga eléctrica se consideran las características estadísticas del consumo para seleccionar los algoritmos de predicción según la cantidad de días a proyectar, usando los datos de cualquiera de los medidores inteligentes, que pueden ser monitoreados en una red eléctrica orientada a las Smart Grids. Universidad Pedagógica y Tecnológica de Colombia 2021-06-02 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772 10.19053/01211129.v30.n56.2021.12772 Revista Facultad de Ingeniería; Vol. 30 No. 56 (2021): April-June 2021 (Continuous Publication); e12772 Revista Facultad de Ingeniería; Vol. 30 Núm. 56 (2021): Abril-Junio 2021 (Publicación Continua); e12772 2357-5328 0121-1129 eng https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10919 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10945 Copyright (c) 2021 Pablo Urgilés, Juan Inga-Ortega, Arturo Peralta, Andrés Ortega http://creativecommons.org/licenses/by/4.0
spellingShingle AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
Urgilés, Pablo
Inga-Ortega, Juan
Peralta, Arturo
Ortega, Andrés
Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_alt Predicción de perfiles de consumo eléctrico usando polinomios potenciales de grado uno y redes neuronales artificiales en la infraestructura de medición inteligente
title_full Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_fullStr Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_full_unstemmed Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_short Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_sort prediction of electricity consumption profiles using potential polynomials of degree one and artificial neural networks in smart metering infrastructure
topic AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
topic_facet AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772
work_keys_str_mv AT urgilespablo predictionofelectricityconsumptionprofilesusingpotentialpolynomialsofdegreeoneandartificialneuralnetworksinsmartmeteringinfrastructure
AT ingaortegajuan predictionofelectricityconsumptionprofilesusingpotentialpolynomialsofdegreeoneandartificialneuralnetworksinsmartmeteringinfrastructure
AT peraltaarturo predictionofelectricityconsumptionprofilesusingpotentialpolynomialsofdegreeoneandartificialneuralnetworksinsmartmeteringinfrastructure
AT ortegaandres predictionofelectricityconsumptionprofilesusingpotentialpolynomialsofdegreeoneandartificialneuralnetworksinsmartmeteringinfrastructure
AT urgilespablo predicciondeperfilesdeconsumoelectricousandopolinomiospotencialesdegradounoyredesneuronalesartificialesenlainfraestructurademedicioninteligente
AT ingaortegajuan predicciondeperfilesdeconsumoelectricousandopolinomiospotencialesdegradounoyredesneuronalesartificialesenlainfraestructurademedicioninteligente
AT peraltaarturo predicciondeperfilesdeconsumoelectricousandopolinomiospotencialesdegradounoyredesneuronalesartificialesenlainfraestructurademedicioninteligente
AT ortegaandres predicciondeperfilesdeconsumoelectricousandopolinomiospotencialesdegradounoyredesneuronalesartificialesenlainfraestructurademedicioninteligente