Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data

Interval censored data is common in several areas of knowledge, such as: epidemiology, finance, demo- graphy, medicine, among others. They occur when the event of interest, the failure time, is not observed exactly, but is within some interval of the observation time. Often in this situation an i...

Full description

Bibliographic Details
Main Authors: Bustos Giraldo, Olga Alexandra, Jaramillo Elorza, Mario César, Lopera Gómez, Carlos Mario
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12785
_version_ 1801706349972684800
author Bustos Giraldo, Olga Alexandra
Jaramillo Elorza, Mario César
Lopera Gómez, Carlos Mario
author_facet Bustos Giraldo, Olga Alexandra
Jaramillo Elorza, Mario César
Lopera Gómez, Carlos Mario
author_sort Bustos Giraldo, Olga Alexandra
collection OJS
description Interval censored data is common in several areas of knowledge, such as: epidemiology, finance, demo- graphy, medicine, among others. They occur when the event of interest, the failure time, is not observed exactly, but is within some interval of the observation time. Often in this situation an imputation is made of the data that is not exactly known. Some methods of multiple imputation proposed in the literature are the PMDA (Poor Man’s Data Augmentation) algorithm and the ANDA (Asymptotic Normal Data Augmen- tation) algorithm, which allow estimating the parameters of the Cox proportional hazards model using classical estimation methods. There are also alternative methods to make these estimations such as the ICM (Iterative Convex Minorant) algorithm and a Bayesian approach, which do not impute the data with interval censoring. In this work, a comparison was made via simulation of the performance of the estimators of the Cox model parameters produced by each of the aforementioned methods. The results showed that in general terms the ICM methods and the Bayesian approach present higher coverage probability values and lower mean square errors, in addition when increasing the sample size these values significantly improve compared to the PMDA and ANDA multiple imputation methods. In the latter, there were no significant differences between the results. Finally, an application was made with real data associated with a study of mastitis in milk cattle.
format Online
id oai:oai.revistas.uptc.edu.co:article-12785
institution Revista Ciencia en Desarrollo
language spa
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-127852023-06-26T20:42:54Z Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data Comparación de algunos métodos para estimar el modelo de riesgos proporcionales de Cox para datos con censura a intervalo Bustos Giraldo, Olga Alexandra Jaramillo Elorza, Mario César Lopera Gómez, Carlos Mario Métodos de imputación múltiple, censura a intervalo, enfoque Bayesiano, algoritmo ICM (Iterative Convex Minorant), modelo de riesgos proporcionales de Cox Multiple imputation methods, Interval-censored, Bayesian approach, ICM (Iterative Convex Minorant) algorithm, Cox proportional hazards model. Interval censored data is common in several areas of knowledge, such as: epidemiology, finance, demo- graphy, medicine, among others. They occur when the event of interest, the failure time, is not observed exactly, but is within some interval of the observation time. Often in this situation an imputation is made of the data that is not exactly known. Some methods of multiple imputation proposed in the literature are the PMDA (Poor Man’s Data Augmentation) algorithm and the ANDA (Asymptotic Normal Data Augmen- tation) algorithm, which allow estimating the parameters of the Cox proportional hazards model using classical estimation methods. There are also alternative methods to make these estimations such as the ICM (Iterative Convex Minorant) algorithm and a Bayesian approach, which do not impute the data with interval censoring. In this work, a comparison was made via simulation of the performance of the estimators of the Cox model parameters produced by each of the aforementioned methods. The results showed that in general terms the ICM methods and the Bayesian approach present higher coverage probability values and lower mean square errors, in addition when increasing the sample size these values significantly improve compared to the PMDA and ANDA multiple imputation methods. In the latter, there were no significant differences between the results. Finally, an application was made with real data associated with a study of mastitis in milk cattle. Los datos con censura a intervalo son comunes en varias áreas del conocimiento, tales como: epidemiolo- gía, finanzas, demografía, medicina, entre otras. Ocurren cuando el evento de interés, el tiempo de falla, no se observa exactamente, sino que se encuentra dentro de algún intervalo del tiempo de observación. Con frecuencia en esta situación se realiza una imputación de los datos que no se conocen exactamente. Algunos de los métodos de imputación múltiple propuestos en la literatura son el algoritmo PMDA (Poor Man’s Data Augmentation) y el algoritmo ANDA (Asymptotic Normal Data Augmentation), los cuales per- miten estimar los parámetros del modelo de riesgos proporcionales de Cox utilizando métodos clásicos de estimación. También existen métodos alternativos para realizar estas estimaciones, como el algoritmo ICM (Iterative Convex Minorant) y un enfoque Bayesiano, que no realizan imputación de los datos con censura a intervalo. En este trabajo se realizó una comparación vía simulación del desempeño de los estimadores de los pa- rámetros del modelo de Cox producidos por cada uno de los métodos anteriormente mencionados. Los resultados evidenciaron que en términos generales los métodos ICM y el enfoque Bayesiano presentan va- lores de probabilidad de cobertura más altos y errores cuadráticos medios más bajos, además al aumentar el tamaño de la muestra estos valores mejoran notablemente comparados con los métodos PMDA y ANDA. En estos últimos no se evidenciaron diferencias considerables entre los resultados. Finalmente, se realizó una aplicación con datos reales asociados a un estudio de mastitis en ganado lechero. Universidad Pedagógica y Tecnológica de Colombia 2022-01-29 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12785 10.19053/01217488.v13.n1.2022.12785 Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 79-92 Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 79-92 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12785/12523
spellingShingle Métodos de imputación múltiple, censura a intervalo, enfoque Bayesiano, algoritmo ICM (Iterative Convex Minorant), modelo de riesgos proporcionales de Cox
Multiple imputation methods, Interval-censored, Bayesian approach, ICM (Iterative Convex Minorant) algorithm, Cox proportional hazards model.
Bustos Giraldo, Olga Alexandra
Jaramillo Elorza, Mario César
Lopera Gómez, Carlos Mario
Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title_alt Comparación de algunos métodos para estimar el modelo de riesgos proporcionales de Cox para datos con censura a intervalo
title_full Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title_fullStr Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title_full_unstemmed Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title_short Comparison of some methods to estimate the Cox proportional hazards model for interval-censored data
title_sort comparison of some methods to estimate the cox proportional hazards model for interval censored data
topic Métodos de imputación múltiple, censura a intervalo, enfoque Bayesiano, algoritmo ICM (Iterative Convex Minorant), modelo de riesgos proporcionales de Cox
Multiple imputation methods, Interval-censored, Bayesian approach, ICM (Iterative Convex Minorant) algorithm, Cox proportional hazards model.
topic_facet Métodos de imputación múltiple, censura a intervalo, enfoque Bayesiano, algoritmo ICM (Iterative Convex Minorant), modelo de riesgos proporcionales de Cox
Multiple imputation methods, Interval-censored, Bayesian approach, ICM (Iterative Convex Minorant) algorithm, Cox proportional hazards model.
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12785
work_keys_str_mv AT bustosgiraldoolgaalexandra comparisonofsomemethodstoestimatethecoxproportionalhazardsmodelforintervalcensoreddata
AT jaramilloelorzamariocesar comparisonofsomemethodstoestimatethecoxproportionalhazardsmodelforintervalcensoreddata
AT loperagomezcarlosmario comparisonofsomemethodstoestimatethecoxproportionalhazardsmodelforintervalcensoreddata
AT bustosgiraldoolgaalexandra comparaciondealgunosmetodosparaestimarelmodeloderiesgosproporcionalesdecoxparadatosconcensuraaintervalo
AT jaramilloelorzamariocesar comparaciondealgunosmetodosparaestimarelmodeloderiesgosproporcionalesdecoxparadatosconcensuraaintervalo
AT loperagomezcarlosmario comparaciondealgunosmetodosparaestimarelmodeloderiesgosproporcionalesdecoxparadatosconcensuraaintervalo