Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks

The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number hig...

Full description

Bibliographic Details
Main Authors: Ladino Moreno, Edgar Orlando, García Ubaque, Cesar Augusto, García-Vaca, María Camila
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241
_version_ 1801706351008677888
author Ladino Moreno, Edgar Orlando
García Ubaque, Cesar Augusto
García-Vaca, María Camila
author_facet Ladino Moreno, Edgar Orlando
García Ubaque, Cesar Augusto
García-Vaca, María Camila
author_sort Ladino Moreno, Edgar Orlando
collection OJS
description The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number higher than 4000. In the present study, a Neural Network was developed from the approach of the Bayesian Regularization Backpropagation method to estimate the coefficient of friction. A set of 200,000 input data (inputs) was established for the relative roughness (ε/D) and the Reynolds Number (Re) and 200,000 output data (outputs) for the friction coefficient. The neuronal architecture that performed best corresponded to two hidden layers with 25 neurons each (2-25-25-1). Network performance was evaluated using mean square error, regression analysis, and the cross-entropy function. The neural model obtained presented a mean square error of 7.42E-13 and a relative error equal to 0.0035 % for the training data. Finally, the Bayesian Regularization backpropagation network demonstrated the ability to calculate the coefficient of friction for turbulent flows with an approximation of 10E-7 concerning the Colebrook-White equation.
format Online
id oai:oai.revistas.uptc.edu.co:article-13241
institution Revista Ciencia en Desarrollo
language spa
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-132412023-06-26T20:42:54Z Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks Modelado del factor de fricción en tuberías a presión Utilizando Redes Neuronales de Aprendizaje Bayesiano Ladino Moreno, Edgar Orlando García Ubaque, Cesar Augusto García-Vaca, María Camila Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number higher than 4000. In the present study, a Neural Network was developed from the approach of the Bayesian Regularization Backpropagation method to estimate the coefficient of friction. A set of 200,000 input data (inputs) was established for the relative roughness (ε/D) and the Reynolds Number (Re) and 200,000 output data (outputs) for the friction coefficient. The neuronal architecture that performed best corresponded to two hidden layers with 25 neurons each (2-25-25-1). Network performance was evaluated using mean square error, regression analysis, and the cross-entropy function. The neural model obtained presented a mean square error of 7.42E-13 and a relative error equal to 0.0035 % for the training data. Finally, the Bayesian Regularization backpropagation network demonstrated the ability to calculate the coefficient of friction for turbulent flows with an approximation of 10E-7 concerning the Colebrook-White equation. El modelo propuesto por Colebrook-White para el cálculo del coeficiente de fricción ha sido aceptado universalmente estableciendo una función trascendental implícita. Esta ecuación determina el coeficiente de fricción para flujos completamente desarrollados, es decir, para flujos turbulentos con un Número de Reynolds superior a 4000. En el presente estudio se desarrolló una Red Neuronal a partir del enfoque del método de Retropropagación de Regularización Bayesiana para estimar el coeficiente de fricción. Se estableció un conjunto de 200,000 datos de entrada (inputs) para la rugosidad relativa (ε/D) y el Número de Reynolds (Re) y 200,000 datos de salida (outputs) para el coeficiente de fricción. La arquitectura neuronal que mejor se desempeñó correspondió a dos capas ocultas con 25 neuronas cada una (2-25-25-1). Se evaluó el rendimiento de la red utilizando el error medio cuadrático, el análisis de regresión y la función de entropía cruzada. El modelo neuronal obtenido presentó un error medio cuadrático de 7.42E-13 y un error relativo igual a 0.0035 % para los datos de entrenamiento. Finalmente, la red de retropropagación de Regularización Bayesiana demostró la capacidad de calcular el coeficiente de fricción para flujos turbulentos con una aproximación de 10E-7 con respecto a la ecuación de Colebrook-White. Universidad Pedagógica y Tecnológica de Colombia 2022-01-29 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241 10.19053/01217488.v13.n1.2022.13241 Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-23 Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-23 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241/12517
spellingShingle Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
Ladino Moreno, Edgar Orlando
García Ubaque, Cesar Augusto
García-Vaca, María Camila
Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_alt Modelado del factor de fricción en tuberías a presión Utilizando Redes Neuronales de Aprendizaje Bayesiano
title_full Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_fullStr Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_full_unstemmed Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_short Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_sort modeling of the friction factor in pressure pipes using bayesian learning neural networks
topic Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
topic_facet Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241
work_keys_str_mv AT ladinomorenoedgarorlando modelingofthefrictionfactorinpressurepipesusingbayesianlearningneuralnetworks
AT garciaubaquecesaraugusto modelingofthefrictionfactorinpressurepipesusingbayesianlearningneuralnetworks
AT garciavacamariacamila modelingofthefrictionfactorinpressurepipesusingbayesianlearningneuralnetworks
AT ladinomorenoedgarorlando modeladodelfactordefriccionentuberiasapresionutilizandoredesneuronalesdeaprendizajebayesiano
AT garciaubaquecesaraugusto modeladodelfactordefriccionentuberiasapresionutilizandoredesneuronalesdeaprendizajebayesiano
AT garciavacamariacamila modeladodelfactordefriccionentuberiasapresionutilizandoredesneuronalesdeaprendizajebayesiano