Spectral denoising in hyperspectral imaging using the discrete wavelet transform

The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise...

Full description

Bibliographic Details
Main Authors: Rincón-Fonseca, Rafael Iván, Velásquez-Hernández, Carlos Alberto, Prieto-Ortiz, Flavio Augusto
Format: Online
Language:eng
spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2021
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
_version_ 1801706005855207424
author Rincón-Fonseca, Rafael Iván
Velásquez-Hernández, Carlos Alberto
Prieto-Ortiz, Flavio Augusto
author_facet Rincón-Fonseca, Rafael Iván
Velásquez-Hernández, Carlos Alberto
Prieto-Ortiz, Flavio Augusto
author_sort Rincón-Fonseca, Rafael Iván
collection OJS
description The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum.
format Online
id oai:oai.revistas.uptc.edu.co:article-13359
institution Revista de Investigación, Desarrollo e Innovación (RIDI)
language eng
spa
publishDate 2021
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-133592022-09-16T22:16:49Z Spectral denoising in hyperspectral imaging using the discrete wavelet transform Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta Rincón-Fonseca, Rafael Iván Velásquez-Hernández, Carlos Alberto Prieto-Ortiz, Flavio Augusto HSI spectral denoising wavelet transform hyperspectral analysis HSI reducción de ruido espectral transformada wavelet análisis hiperespectral The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum. El uso de sensores hiperespectrales ha tomado relevancia en la agricultura, debido a su potencial en el manejo fitosanitario de cultivos. Sin embargo, estos sensores son sensibles al registro de ruido espectral, lo cual dificulta su aplicación real. Por lo anterior, este trabajo se centró en el análisis del ruido espectral presente en un banco de 180 imágenes hiperespectrales de hojas de mango adquiridas en laboratorio, y la implementación de una técnica de reducción de ruido basada en la transformada discreta de wavelet. El análisis de ruido consistió en la identificación de las bandas de mayor ruido, mientras que el desempeño de la técnica fue medido con las métricas PSNR y SNR. Como resultado, se determinó que el ruido espectral estuvo presente en los extremos del espectro (417-421nm y 969-994nm), mientras que el método Neigh-Shrink alcanzó un SNR del orden de 1011 con respecto al orden de 102 del espectro original. Universidad Pedagógica y Tecnológica de Colombia 2021-08-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359 10.19053/20278306.v11.n3.2021.13359 Revista de Investigación, Desarrollo e Innovación; Vol. 11 No. 3 (2021): Julio-Diciembre; 601-616 Revista de Investigación, Desarrollo e Innovación; Vol. 11 Núm. 3 (2021): Julio-Diciembre; 601-616 2389-9417 2027-8306 eng spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11825 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11826
spellingShingle HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
Rincón-Fonseca, Rafael Iván
Velásquez-Hernández, Carlos Alberto
Prieto-Ortiz, Flavio Augusto
Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_alt Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta
title_full Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_fullStr Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_full_unstemmed Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_short Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_sort spectral denoising in hyperspectral imaging using the discrete wavelet transform
topic HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
topic_facet HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
work_keys_str_mv AT rinconfonsecarafaelivan spectraldenoisinginhyperspectralimagingusingthediscretewavelettransform
AT velasquezhernandezcarlosalberto spectraldenoisinginhyperspectralimagingusingthediscretewavelettransform
AT prietoortizflavioaugusto spectraldenoisinginhyperspectralimagingusingthediscretewavelettransform
AT rinconfonsecarafaelivan reduccionderuidoespectralenimageneshiperespectralesmediantelatransformadawaveletdiscreta
AT velasquezhernandezcarlosalberto reduccionderuidoespectralenimageneshiperespectralesmediantelatransformadawaveletdiscreta
AT prietoortizflavioaugusto reduccionderuidoespectralenimageneshiperespectralesmediantelatransformadawaveletdiscreta