Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks

The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applyin...

Full description

Bibliographic Details
Main Authors: García-Ubaque, Cesar-Augusto, Ladino-Moreno, Edgar-Orlando, García-Vaca, María-Camila
Format: Online
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
_version_ 1801706098367922176
author García-Ubaque, Cesar-Augusto
Ladino-Moreno, Edgar-Orlando
García-Vaca, María-Camila
author_facet García-Ubaque, Cesar-Augusto
Ladino-Moreno, Edgar-Orlando
García-Vaca, María-Camila
author_sort García-Ubaque, Cesar-Augusto
collection OJS
description The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values ​​obtained with ®Epanet, evidencing the generalizability of the optimized system.
format Online
id oai:oai.revistas.uptc.edu.co:article-14037
institution Revista Facultad de Ingeniería
language eng
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-140372022-11-18T19:26:00Z Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks Determinación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificiales García-Ubaque, Cesar-Augusto Ladino-Moreno, Edgar-Orlando García-Vaca, María-Camila Artificial Neural Network cold chain. Darcy-Weisbach Levenberg-Marquardt pipeline hydraulics Colebrook-White Darcy-Weisbach hidráulica de tuberías Levenberg-Marquardt red neuronal artificial The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values ​​obtained with ®Epanet, evidencing the generalizability of the optimized system. El diámetro en sistemas a presión de agua potable es posible determinarlo mediante una ecuación polinómica de quinto grado. Como variables de entrada se tiene: Q: caudal (m3/s), H: pérdida de carga (m); L: longitud de la tubería (m); ε: rugosidad (m), : viscosidad cinemática (m2/s) y Ʃk: sumatoria de coeficientes de pérdidas menores (adimensional). Aplicado la ecuación de la energía para un sistema hidráulico compuesto por dos tanques conectados con una tubería de diámetro constante y aceptando la ecuación de Colebrook-White y la ecuación de Darcy-Weisbach se obtiene una expresión subdeterminada debido a que se establecen más incógnitas que ecuaciones. Este problema se soluciona implementando un bucle anidado para el coeficiente de fricción y el diámetro. Este artículo propone una Red Neuronal Artificial (RNA) implementando el método de Retropropagación Levenberg-Marquardt para estimar el diámetro a partir de la función de transferencia log-sigmoidal, esto bajo condiciones estacionarias de flujo. El conjunto de las señales de entrenamiento está conformado por 5,000 datos aleatorios que siguen una distribución normal, calculados en Visual Basic (®Excel). Los estadísticos utilizados para la evaluación de la red corresponden al error medio cuadrático, el análisis de regresión y la función de entropía cruzada. La arquitectura que demostró un mejor redimento correspondió a una capa oculta con 25 neuronas (6-25-1) presentando un MSE igual a 5.41E-6 y 9.98E+00 para el Coeficiente de Correlación de Pearson. La validación cruzada del esquema neuronal se realizó a partir de 1,000 señales de entrada independientes del conjunto de entrenamiento obteniendo MSE igual 6.91E-6. La red neuronal propuesta calcula el diámetro con un error relativo igual a 0.01% con respecto a los valores obtenidos a partir de ®Epanet, evidenciando la capacidad de generalización del sistema optimizado. Universidad Pedagógica y Tecnológica de Colombia 2022-03-25 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037 10.19053/01211129.v31.n59.2022.14037 Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14037 Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e14037 2357-5328 0121-1129 eng https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11574 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11680 Copyright (c) 2022 Cesar-Augusto García-Ubaque, Edgar-Orlando Ladino-Moreno, María-Camila García-Vaca http://creativecommons.org/licenses/by/4.0
spellingShingle Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
García-Ubaque, Cesar-Augusto
Ladino-Moreno, Edgar-Orlando
García-Vaca, María-Camila
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_alt Determinación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificiales
title_full Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_fullStr Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_full_unstemmed Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_short Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_sort determination of the inside diameter of pressure pipes for drinking water systems using artificial neural networks
topic Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
topic_facet Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
work_keys_str_mv AT garciaubaquecesaraugusto determinationoftheinsidediameterofpressurepipesfordrinkingwatersystemsusingartificialneuralnetworks
AT ladinomorenoedgarorlando determinationoftheinsidediameterofpressurepipesfordrinkingwatersystemsusingartificialneuralnetworks
AT garciavacamariacamila determinationoftheinsidediameterofpressurepipesfordrinkingwatersystemsusingartificialneuralnetworks
AT garciaubaquecesaraugusto determinaciondeldiametrointeriordetuberiasapresionparasistemasdeaguapotableutilizandoredesneuronalesartificiales
AT ladinomorenoedgarorlando determinaciondeldiametrointeriordetuberiasapresionparasistemasdeaguapotableutilizandoredesneuronalesartificiales
AT garciavacamariacamila determinaciondeldiametrointeriordetuberiasapresionparasistemasdeaguapotableutilizandoredesneuronalesartificiales