Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review

The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different...

Full description

Bibliographic Details
Main Authors: Vargas-Zapata, Mateo, Medina-Sierra, Marisol, Galeano-Vasco, Luis Fernando, Cerón-Muñoz, Mario Fernando
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
_version_ 1801706007161733120
author Vargas-Zapata, Mateo
Medina-Sierra, Marisol
Galeano-Vasco, Luis Fernando
Cerón-Muñoz, Mario Fernando
author_facet Vargas-Zapata, Mateo
Medina-Sierra, Marisol
Galeano-Vasco, Luis Fernando
Cerón-Muñoz, Mario Fernando
author_sort Vargas-Zapata, Mateo
collection OJS
description The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands.
format Online
id oai:oai.revistas.uptc.edu.co:article-14212
institution Revista de Investigación, Desarrollo e Innovación (RIDI)
language spa
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-142122023-01-31T00:22:35Z Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review Algoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemática Vargas-Zapata, Mateo Medina-Sierra, Marisol Galeano-Vasco, Luis Fernando Cerón-Muñoz, Mario Fernando prediction algorithms machine learning chemical analysis spectroscopy algoritmos de predicción aprendizaje de máquina análisis químico espectroscopía The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands. En la literatura científica actual se discute ampliamente acerca de la predicción de propiedades edáficas mediante información espectral. El objetivo de esta revisión fue encontrar algoritmos con el mayor potencial predictivo para las propiedades fisicoquímicas del suelo, basados en información espectral capturada con diferentes instrumentos. Se realizó una revisión sistemática en la cual se encontraron 121 artículos de los cuales se eligieron 19, que cumplieran con un coeficiente de determinación mayor a 0,80 o una raíz del error cuadrado medio cercana a 0. Se determinó que el rango espectral más utilizado corresponde al rango desde 350 hasta 2500 nm; los algoritmos mínimos cuadrados parciales, máquina de soporte vectorial y máquina de soporte vectorial ajustado son adecuadas para predecir pH, materia orgánica y carbono orgánico. Además, la regresión lineal solo es efectiva para predecir el carbonato de calcio, materia orgánica, humedad y contenido de agua mediante bandas individuales. Universidad Pedagógica y Tecnológica de Colombia 2022-02-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212 10.19053/20278306.v12.n1.2022.14212 Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 1 (2022): Enero-Junio; 107-120 Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 1 (2022): Enero-Junio; 107-120 2389-9417 2027-8306 spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/11646 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/12562 Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
spellingShingle prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
Vargas-Zapata, Mateo
Medina-Sierra, Marisol
Galeano-Vasco, Luis Fernando
Cerón-Muñoz, Mario Fernando
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_alt Algoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemática
title_full Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_fullStr Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_full_unstemmed Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_short Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_sort machine learning algorithms for prediction of physicochemical soil properties by spectral information a systematic review
topic prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
topic_facet prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
work_keys_str_mv AT vargaszapatamateo machinelearningalgorithmsforpredictionofphysicochemicalsoilpropertiesbyspectralinformationasystematicreview
AT medinasierramarisol machinelearningalgorithmsforpredictionofphysicochemicalsoilpropertiesbyspectralinformationasystematicreview
AT galeanovascoluisfernando machinelearningalgorithmsforpredictionofphysicochemicalsoilpropertiesbyspectralinformationasystematicreview
AT ceronmunozmariofernando machinelearningalgorithmsforpredictionofphysicochemicalsoilpropertiesbyspectralinformationasystematicreview
AT vargaszapatamateo algoritmosdeaprendizajedemaquinaparalapredicciondepropiedadesfisicoquimicasdelsuelomedianteinformacionespectralunarevisionsistematica
AT medinasierramarisol algoritmosdeaprendizajedemaquinaparalapredicciondepropiedadesfisicoquimicasdelsuelomedianteinformacionespectralunarevisionsistematica
AT galeanovascoluisfernando algoritmosdeaprendizajedemaquinaparalapredicciondepropiedadesfisicoquimicasdelsuelomedianteinformacionespectralunarevisionsistematica
AT ceronmunozmariofernando algoritmosdeaprendizajedemaquinaparalapredicciondepropiedadesfisicoquimicasdelsuelomedianteinformacionespectralunarevisionsistematica