Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures

Beehive ovens made of red clay or adobe bricks are used in the coal coking industry. In the process, the furnaces are subjected to sudden changes in temperature that range from 1000 ◦C to 300 ◦C on average, in the removal process a steel rake is used to remove the coke, which causes abrasive wear...

Full description

Saved in:
Bibliographic Details
Main Authors: Ferrer Pacheco, Martha Yasmid, Vera, Emilio, Vargas, Fabio
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2023
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14395
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1801706354885263360
author Ferrer Pacheco, Martha Yasmid
Vera, Emilio
Vargas, Fabio
author_facet Ferrer Pacheco, Martha Yasmid
Vera, Emilio
Vargas, Fabio
author_sort Ferrer Pacheco, Martha Yasmid
collection OJS
description Beehive ovens made of red clay or adobe bricks are used in the coal coking industry. In the process, the furnaces are subjected to sudden changes in temperature that range from 1000 ◦C to 300 ◦C on average, in the removal process a steel rake is used to remove the coke, which causes abrasive wear due to friction between the rake, the coke, and the floor, at elevated temperatures. Over time, flooring deteriorates and needs to be replaced, leading to high maintenance costs. To prolong the service life of the furnace floor, it is lined with a material resistant to wear at high temperatures. One of the best performing materials under these conditions is zirconia, which when properly mixed with alumina provides excellent surface protection against wear and thermal shock. For the preparation of the coatings, the thermal projection technique with oxyacetylene flame was chosen, due to its versatility and economy. The coatings are characterized morphologically with MO optical microscopy and scanning electron microscopy SEM, the microstructure is analyzed by XRD diffraction, the wear resistance with tribometer in ball-disc configuration at room temperature and 500 ◦C without abrasive, microhardness with Vickers notches and resistance to thermal shock with cycles of heating to 500 ◦C, and cooling to room temperature. It is found that all coatings exhibited much higher wear resistance than the uncoated substrate by at least one order of magnitude and that the coating protected the substrate through at least 30 thermal shock cycles.
format Online
id oai:oai.revistas.uptc.edu.co:article-14395
institution Revista Ciencia en Desarrollo
language spa
publishDate 2023
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-143952024-03-25T03:53:58Z Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures Recubrimientos cerámicos resistentes al desgaste y al choque térmico a alta temperatura Ferrer Pacheco, Martha Yasmid Vera, Emilio Vargas, Fabio Recubrimientos, proyección térmica por llama, resistencia al desgaste, resistencia al choque térmico Coatings, thermal projection by flame, resistance to wear, resistance to thermal shock Beehive ovens made of red clay or adobe bricks are used in the coal coking industry. In the process, the furnaces are subjected to sudden changes in temperature that range from 1000 ◦C to 300 ◦C on average, in the removal process a steel rake is used to remove the coke, which causes abrasive wear due to friction between the rake, the coke, and the floor, at elevated temperatures. Over time, flooring deteriorates and needs to be replaced, leading to high maintenance costs. To prolong the service life of the furnace floor, it is lined with a material resistant to wear at high temperatures. One of the best performing materials under these conditions is zirconia, which when properly mixed with alumina provides excellent surface protection against wear and thermal shock. For the preparation of the coatings, the thermal projection technique with oxyacetylene flame was chosen, due to its versatility and economy. The coatings are characterized morphologically with MO optical microscopy and scanning electron microscopy SEM, the microstructure is analyzed by XRD diffraction, the wear resistance with tribometer in ball-disc configuration at room temperature and 500 ◦C without abrasive, microhardness with Vickers notches and resistance to thermal shock with cycles of heating to 500 ◦C, and cooling to room temperature. It is found that all coatings exhibited much higher wear resistance than the uncoated substrate by at least one order of magnitude and that the coating protected the substrate through at least 30 thermal shock cycles. En la industria de la coquización del carbón, se utilizan hornos colmena construidos de ladrillos de arcilla roja o adobe. En el proceso los hornos son sometidos a cambios bruscos de temperatura que van desde los 1000 ◦C hasta los 300 ◦C en promedio, en el deshorne se utiliza un rastrillo de acero para remover el coque, lo que ocasiona un desgaste abrasivo por rozamiento entre el rastrillo, el coque y el piso, a temperaturas elevadas. Con el tiempo el piso se deteriora y es necesario reemplazarlo, lo que ocasiona grandes costos de mantenimiento. Con el fin de prolongar la vida útil del piso del horno se hace un recubrimiento con un material resistente al desgaste a altas temperaturas. Uno de los materiales de mejor desempeño en estas condiciones es la circona, que mezclada adecuadamente con alúmina brinda una excelente protección a las superficies frente al desgaste y el choque térmico. Para elaborar los recubrimientos se escoge la técnica de proyección térmica por llama oxiacetilénica, por su versatilidad y economía. Los recubrimientos se caracterizan morfológicamente con microscopía óptica MO y microscopía electrónica de barrido MEB, la microestructura se analiza por difracción de DRX, la resistencia al desgaste con tribómetro en la configuración bola-disco a temperatura ambiente y 500 ◦C sin abrasivo, la microdureza con indentaciones Vickers y la resistencia al choque térmico con ciclos de calentamiento de 500 ◦C y enfriamiento a temperatura ambiente. Se encuentra que todos los recubrimientos presentaron una resistencia al desgaste muy superior a la del sustrato sin recubrir de al menos un orden de magnitud y que el recubrimiento protege al sustrato en al menos 30 ciclos de choque térmico. Universidad Pedagógica y Tecnológica de Colombia 2023-03-02 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14395 10.19053/01217488.v14.n1.2023.14395 Ciencia En Desarrollo; Vol. 14 No. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 119-128 Ciencia en Desarrollo; Vol. 14 Núm. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 119-128 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14395/13483
spellingShingle Recubrimientos, proyección térmica por llama, resistencia al desgaste, resistencia al choque térmico
Coatings, thermal projection by flame, resistance to wear, resistance to thermal shock
Ferrer Pacheco, Martha Yasmid
Vera, Emilio
Vargas, Fabio
Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title_alt Recubrimientos cerámicos resistentes al desgaste y al choque térmico a alta temperatura
title_full Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title_fullStr Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title_full_unstemmed Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title_short Ceramic Coatings Resistant to Wear and Thermal Shock at High Temperatures
title_sort ceramic coatings resistant to wear and thermal shock at high temperatures
topic Recubrimientos, proyección térmica por llama, resistencia al desgaste, resistencia al choque térmico
Coatings, thermal projection by flame, resistance to wear, resistance to thermal shock
topic_facet Recubrimientos, proyección térmica por llama, resistencia al desgaste, resistencia al choque térmico
Coatings, thermal projection by flame, resistance to wear, resistance to thermal shock
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14395
work_keys_str_mv AT ferrerpachecomarthayasmid ceramiccoatingsresistanttowearandthermalshockathightemperatures
AT veraemilio ceramiccoatingsresistanttowearandthermalshockathightemperatures
AT vargasfabio ceramiccoatingsresistanttowearandthermalshockathightemperatures
AT ferrerpachecomarthayasmid recubrimientosceramicosresistentesaldesgasteyalchoquetermicoaaltatemperatura
AT veraemilio recubrimientosceramicosresistentesaldesgasteyalchoquetermicoaaltatemperatura
AT vargasfabio recubrimientosceramicosresistentesaldesgasteyalchoquetermicoaaltatemperatura