Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite

The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response...

Full description

Bibliographic Details
Main Authors: Usuga Manco, Liliana María, Hernández Barajas, Freddy, Usuga Manco, Olga
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2023
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424
_version_ 1801706355270090752
author Usuga Manco, Liliana María
Hernández Barajas, Freddy
Usuga Manco, Olga
author_facet Usuga Manco, Liliana María
Hernández Barajas, Freddy
Usuga Manco, Olga
author_sort Usuga Manco, Liliana María
collection OJS
description The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response variable. The data analyzed in this study correspond to a kaolinite extraction process by surface physicochemistry carried out in La Unión, Antioquia, Colombia. The response variable was the zeta potential and the explanatory variables were type of collecting solution, concentration, and pH. In this article, the recovery of kaolinite is modeled through generalized additive models, which can choose the statistical distribution and model all the parameters based on explanatory variables. Five distributions were selected for the response variable according to the Akaike information criterion ($AIC$). The model with generalized distribution Beta 2 was the model that presented the best performance according to the metrics used and it was found that the best-operating conditions obtained are the type of oleic acid collector, the concentration of 10 units, and pH 6
format Online
id oai:oai.revistas.uptc.edu.co:article-14424
institution Revista Ciencia en Desarrollo
language spa
publishDate 2023
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-144242024-05-10T00:51:44Z Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite Modelos Aditivos Generalizados para optimizar el proceso de hidrofobicidad de la caolinita Usuga Manco, Liliana María Hernández Barajas, Freddy Usuga Manco, Olga Caolinita hidrofobicidad modelos aditivos modelos de regresión potencial zeta additive models, hydrophobicity, kaolinite, regression models, zeta potential The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response variable. The data analyzed in this study correspond to a kaolinite extraction process by surface physicochemistry carried out in La Unión, Antioquia, Colombia. The response variable was the zeta potential and the explanatory variables were type of collecting solution, concentration, and pH. In this article, the recovery of kaolinite is modeled through generalized additive models, which can choose the statistical distribution and model all the parameters based on explanatory variables. Five distributions were selected for the response variable according to the Akaike information criterion ($AIC$). The model with generalized distribution Beta 2 was the model that presented the best performance according to the metrics used and it was found that the best-operating conditions obtained are the type of oleic acid collector, the concentration of 10 units, and pH 6 El amplio uso industrial de la caolinita requiere que los procesos de extracción sean modelados de para determinar las condiciones apropiadas del beneficio. Aunque se han utilizado modelos de regresión lineal clásicos, estos no han sido apropiados debido al incumplimiento de distribución normal para la variable respuesta. Los datos analizados en este estudio corresponden a un proceso de extracción de caolinita mediante fisicoquímica de superficies realizado en La Unión, Antioquia, Colombia. La variable de respuesta fue el potencial zeta y las variables explicativas fueron tipo de solución colectora, concentración y pH. En este artículo se modela la recuperación de caolinita a través de los modelos aditivos generalizados, los cuales permiten elegir la distribución estadística y modelar todos los parámetros en función de variables explicativas. Se seleccionaron cinco distribuciones para la variable respuesta de acuerdo al criterio de información de Akaike ($AIC$). El modelo con distribución generalizada Beta 2 fue el modelo que presentó el mejor desempeño de acuerdo a las métricas utilizadas. A partir de este modelo se encontró que las mejores condiciones de operación obtenidas del análisis de las superficies de respuesta son tipo de colector ácido oleico, concentración 10 unidades y pH de 6 Universidad Pedagógica y Tecnológica de Colombia 2023-07-19 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424 10.19053/01217488.v14.n2.2023.14424 Ciencia En Desarrollo; Vol. 14 No. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-112 Ciencia en Desarrollo; Vol. 14 Núm. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-112 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424/13678
spellingShingle Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
Usuga Manco, Liliana María
Hernández Barajas, Freddy
Usuga Manco, Olga
Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_alt Modelos Aditivos Generalizados para optimizar el proceso de hidrofobicidad de la caolinita
title_full Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_fullStr Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_full_unstemmed Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_short Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_sort generalized additive models to optimize the hydrophobicity process of kaolinite
topic Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
topic_facet Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424
work_keys_str_mv AT usugamancolilianamaria generalizedadditivemodelstooptimizethehydrophobicityprocessofkaolinite
AT hernandezbarajasfreddy generalizedadditivemodelstooptimizethehydrophobicityprocessofkaolinite
AT usugamancoolga generalizedadditivemodelstooptimizethehydrophobicityprocessofkaolinite
AT usugamancolilianamaria modelosaditivosgeneralizadosparaoptimizarelprocesodehidrofobicidaddelacaolinita
AT hernandezbarajasfreddy modelosaditivosgeneralizadosparaoptimizarelprocesodehidrofobicidaddelacaolinita
AT usugamancoolga modelosaditivosgeneralizadosparaoptimizarelprocesodehidrofobicidaddelacaolinita