Potential use of electrochemically synthesized silver nanoparticles on rice panicle blight pathogen, Burkholderia glumae

Burkholderia glumae, is the main causal agent of bacterial panicle blight (BPB) in rice (Oriza sativa), a disease that generates production losses worldwide. Despite its economic importance, effective control measures and rice varieties with complete resistance to this disease have not yet been avai...

Full description

Bibliographic Details
Main Authors: Chaves-Bedoya, Giovanni, Padilla, Hilda Angélica, Ortiz-Rojas, Luz Yineth, Peña-Rodríguez, Gabriel
Format: Online
Language:eng
Published: Sociedad Colombiana de Ciencias Hortícolas-SCCH and Universidad Pedagógica y Tecnológica de Colombia-UPTC 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/14738
Description
Summary:Burkholderia glumae, is the main causal agent of bacterial panicle blight (BPB) in rice (Oriza sativa), a disease that generates production losses worldwide. Despite its economic importance, effective control measures and rice varieties with complete resistance to this disease have not yet been available. In this study, the antimicrobial activity of electrochemically synthesized silver nanoparticles (AgNPs) against B. glumae was evaluated. The AgNPs were synthesized with a DC power supply (UNI-T®) regulated at 24 V, which was connected to two cylindrical electrodes of high purity silver (Aldrich-99.99%) using distilled water as an electrolyte. The AgNPs concentration was determined by measuring the total dissolved solids (TDS) with a HandyLab 680 FK multiparameter. The antibacterial activity of these nanoparticles against B. glumae was determined by the broth macrodilution method at different concentrations (1-10 mg L-1). The minimum inhibitory concentration (MIC) was determined in 5 mg L-1 of AgNPs. The results revealed that AgNPs are a promising nanopesticide for controlling the BPB disease in rice.