Summary: | Acylhydrazones have been studied since 1850, they are important compounds for drug design due to their extensive biological activity. The compounds were synthesized by a nucleophilic addition reaction to the carbonyl group; six derivatives were obtained using 2,4-dinitrophenylhydrazine (2,4-DNPH) and ketones: fluorenone, benzophenone and substituted benzophenones; Good yields have been obtained in all cases, the best percentage corresponds to compound (7), with 67% and the lowest to compound (10) with a yield of 29%. Principles number two and five of green chemistry were applied during the development of the synthesis. In addition, the production methodology used was a modification of the procedure described in the knowledge base. The substituted benzophenones were obtained by oxidation of the respective alcohols, so that it was obtained benzophenones and fluoenone; In this method, sodium hypochlorite is used as an oxidation agent and tetrabutyl ammonium bromide as a phase transfer medium in an aqueous medium. The molecules were characterized by proton nuclear magnetic resonance (1H-NMR) and attenuated total reflectance infrared spectroscopy (IR-ATR) among other spectroscopic techniques. Biological activity was evaluated by using the Kirby-Bauer method, in order to determine the sensitivity of an organism to antibiotics or antifungals. The results show that the substituted hydrazones (9 and 10) presented a higher inhibitory activity against Candida albicans and Aspergillus niger compared to 1% cycloheximide, but considerably less effective than ketoconazole compounds used as control.
|