Automatic Extractive Single Document Summarization: A Systematic Mapping

Automatic Extractive Single Document Summarization (AESDS) is a research area that aims to create a condensed version of a document with the most relevant information; it acquires more importance daily due to the need of users to obtain information on documents published on the Internet quickly. In...

Full description

Bibliographic Details
Main Authors: Yip-Herrera, Juan-David, Mendoza-Becerra, Martha-Eliana, Rodríguez, Francisco-Javier
Format: Online
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2023
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15232
_version_ 1801706101817737216
author Yip-Herrera, Juan-David
Mendoza-Becerra, Martha-Eliana
Rodríguez, Francisco-Javier
author_facet Yip-Herrera, Juan-David
Mendoza-Becerra, Martha-Eliana
Rodríguez, Francisco-Javier
author_sort Yip-Herrera, Juan-David
collection OJS
description Automatic Extractive Single Document Summarization (AESDS) is a research area that aims to create a condensed version of a document with the most relevant information; it acquires more importance daily due to the need of users to obtain information on documents published on the Internet quickly. In automatic document summarization, each element must be evaluated and ranked to generate a summary. As such, there are three approaches considering the number of objectives they evaluate: single-objective, multi-objective, and many-objective. This systematic mapping aims to provide knowledge about the methods and techniques used in extractive techniques for AESDS, analyzing the number of objectives and characteristics evaluated, which can be helpful for future research. This mapping was carried out using a generic process for the realization of systematic reviews where a search string was built considering some research questions. A filter was then used with inclusion and exclusion criteria for selecting primary studies with which it will carry out the analysis. Additionally, these studies are sorted according to the relevance of their content. This process is summarized in three main steps: planning, execution, and result analysis. At the end of the mapping, the following observations were identified: (i) There is a preference for the use of machine learning methods and the use of clustering techniques, (ii) the importance of using both types of characteristics (statistics and semantics), and (iii) the need to explore the many-objective approach.
format Online
id oai:oai.revistas.uptc.edu.co:article-15232
institution Revista Facultad de Ingeniería
language eng
publishDate 2023
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-152322023-07-20T19:06:11Z Automatic Extractive Single Document Summarization: A Systematic Mapping Generación automática de resúmenes extractivos para un solo documento: un mapeo sistemático Yip-Herrera, Juan-David Mendoza-Becerra, Martha-Eliana Rodríguez, Francisco-Javier Automatic text summarization Extractive Systematic mapping Generación automática de resúmenes Extractivo Mapeo Sistemático Automatic Extractive Single Document Summarization (AESDS) is a research area that aims to create a condensed version of a document with the most relevant information; it acquires more importance daily due to the need of users to obtain information on documents published on the Internet quickly. In automatic document summarization, each element must be evaluated and ranked to generate a summary. As such, there are three approaches considering the number of objectives they evaluate: single-objective, multi-objective, and many-objective. This systematic mapping aims to provide knowledge about the methods and techniques used in extractive techniques for AESDS, analyzing the number of objectives and characteristics evaluated, which can be helpful for future research. This mapping was carried out using a generic process for the realization of systematic reviews where a search string was built considering some research questions. A filter was then used with inclusion and exclusion criteria for selecting primary studies with which it will carry out the analysis. Additionally, these studies are sorted according to the relevance of their content. This process is summarized in three main steps: planning, execution, and result analysis. At the end of the mapping, the following observations were identified: (i) There is a preference for the use of machine learning methods and the use of clustering techniques, (ii) the importance of using both types of characteristics (statistics and semantics), and (iii) the need to explore the many-objective approach. La Generación Automática de Resúmenes Extractivos para un Solo Documento (GAReUD) es un área de investigación que tiene como objetivo crear una versión corta de un documento con la información más relevante y adquiere mayor importancia a diario debido a la necesidad de los usuarios de obtener rápidamente información de documentos publicados en internet. En el área de generación automática de resúmenes cada elemento debe ser evaluado y luego rankeado para conformar un resumen, de acuerdo con esto, existen tres diferentes enfoques teniendo en cuenta la cantidad de objetivos que se evalúan, así: mono objetivo, multi objetivo y de muchos objetivos. El propósito de este mapeo sistemático es brindar conocimiento sobre los métodos y técnicas utilizadas en métodos extractivos de GAReUD, analizando la cantidad de objetivos y características evaluadas, que pueden ser útiles para futuras investigaciones. Este mapeo se realizó utilizando un proceso genérico para la realización de revisiones sistemáticas donde se construye una cadena de búsqueda considerando unas preguntas de investigación, luego se utiliza un filtro con unos criterios de inclusión y exclusión para la selección de los estudios primarios con los que se realizará el análisis, adicionalmente, estos estudios se ordenan de acuerdo con la relevancia de su contenido; este proceso se resume en tres pasos principales: Planificación, Ejecución y Análisis de resultados. Al final del mapeo se identificaron las siguientes observaciones: (i) existe una preferencia por la utilización de métodos basados en aprendizaje automático de máquina y también por el uso de técnicas de agrupamiento, (ii) la importancia de usar como objetivos ambos tipos de características (estadísticas y semánticas) y (iii) la necesidad de explorar el enfoque de muchos objetivos. Universidad Pedagógica y Tecnológica de Colombia 2023-02-28 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15232 10.19053/01211129.v32.n63.2023.15232 Revista Facultad de Ingeniería; Vol. 32 No. 63 (2023): January-March 2023 (Continuous Publication); e15232 Revista Facultad de Ingeniería; Vol. 32 Núm. 63 (2023): Enero-Marzo 2023 (Publicación Continua); e15232 2357-5328 0121-1129 eng https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15232/12707 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15232/13184 Copyright (c) 2023 Juan-David Yip-Herrera, Martha-Eliana Mendoza-Becerra, Francisco-Javier Rodríguez http://creativecommons.org/licenses/by/4.0
spellingShingle Automatic text summarization
Extractive
Systematic mapping
Generación automática de resúmenes
Extractivo
Mapeo Sistemático
Yip-Herrera, Juan-David
Mendoza-Becerra, Martha-Eliana
Rodríguez, Francisco-Javier
Automatic Extractive Single Document Summarization: A Systematic Mapping
title Automatic Extractive Single Document Summarization: A Systematic Mapping
title_alt Generación automática de resúmenes extractivos para un solo documento: un mapeo sistemático
title_full Automatic Extractive Single Document Summarization: A Systematic Mapping
title_fullStr Automatic Extractive Single Document Summarization: A Systematic Mapping
title_full_unstemmed Automatic Extractive Single Document Summarization: A Systematic Mapping
title_short Automatic Extractive Single Document Summarization: A Systematic Mapping
title_sort automatic extractive single document summarization a systematic mapping
topic Automatic text summarization
Extractive
Systematic mapping
Generación automática de resúmenes
Extractivo
Mapeo Sistemático
topic_facet Automatic text summarization
Extractive
Systematic mapping
Generación automática de resúmenes
Extractivo
Mapeo Sistemático
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15232
work_keys_str_mv AT yipherrerajuandavid automaticextractivesingledocumentsummarizationasystematicmapping
AT mendozabecerramarthaeliana automaticextractivesingledocumentsummarizationasystematicmapping
AT rodriguezfranciscojavier automaticextractivesingledocumentsummarizationasystematicmapping
AT yipherrerajuandavid generacionautomaticaderesumenesextractivosparaunsolodocumentounmapeosistematico
AT mendozabecerramarthaeliana generacionautomaticaderesumenesextractivosparaunsolodocumentounmapeosistematico
AT rodriguezfranciscojavier generacionautomaticaderesumenesextractivosparaunsolodocumentounmapeosistematico