Early flood warning system for the Arauca river based on artificial intelligence techniques

This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitat...

Full description

Bibliographic Details
Main Authors: Cárdenas-Rodríguez, Sorangela, Vides-Herrera, Carlos Arturo, Pardo-García, Aldo
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274
_version_ 1801706009342771200
author Cárdenas-Rodríguez, Sorangela
Vides-Herrera, Carlos Arturo
Pardo-García, Aldo
author_facet Cárdenas-Rodríguez, Sorangela
Vides-Herrera, Carlos Arturo
Pardo-García, Aldo
author_sort Cárdenas-Rodríguez, Sorangela
collection OJS
description This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitation, level and flow. This information model supplies the data to the mathematical model corresponding to the river channel, which is obtained from three kinds of trends: linear, power and potential relationships. This model is compared with an observer based on intelligent techniques such as neural networks and ANFIS, which make the difference of their outputs and a residue is obtained that is in charge of supplying the information that provides the current state of the river level under study, which in turn generates alerts that are addressed by government entities dedicated to risk management.
format Online
id oai:oai.revistas.uptc.edu.co:article-15274
institution Revista de Investigación, Desarrollo e Innovación (RIDI)
language spa
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-152742023-07-25T02:42:24Z Early flood warning system for the Arauca river based on artificial intelligence techniques Sistema de alerta temprana de inundaciones para el río Arauca basado en técnicas de inteligencia artificial Cárdenas-Rodríguez, Sorangela Vides-Herrera, Carlos Arturo Pardo-García, Aldo flood; water level; mathematical model; early warnings inundación; nivel de agua; modelo matemático; alerta temprana This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitation, level and flow. This information model supplies the data to the mathematical model corresponding to the river channel, which is obtained from three kinds of trends: linear, power and potential relationships. This model is compared with an observer based on intelligent techniques such as neural networks and ANFIS, which make the difference of their outputs and a residue is obtained that is in charge of supplying the information that provides the current state of the river level under study, which in turn generates alerts that are addressed by government entities dedicated to risk management. En este artículo se establece el diseño de un sistema de alertas tempranas de inundación en el río Arauca, municipio de Arauca, Colombia. La información del estudio se extrae del IDEAM y es procesada obteniendo un modelo a través de las variables intervinientes, como: precipitación, nivel y caudal. Este modelo de información suministra la data al modelo matemático para el cauce del río, que se obtiene a partir de tres clases de tendencias: lineal, potencia y relaciones potenciales. El modelo del cauce se compara con un observador basado en técnicas inteligentes, redes neuronales y ANFIS en este caso, que al hacer la diferencia de sus salidas genera un residuo encargado de suministrar la información que proporciona el estado actual de nivel del río bajo estudio. Esta información permite generar las alertas que son atendidas por las entidades del gobierno dedicadas a la gestión del riesgo. Universidad Pedagógica y Tecnológica de Colombia 2022-08-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274 10.19053/20278306.v12.n2.2022.15274 Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 2 (2022): Julio-Diciembre; 315-326 Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 2 (2022): Julio-Diciembre; 315-326 2389-9417 2027-8306 spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/12487 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/13218 Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
spellingShingle flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
Cárdenas-Rodríguez, Sorangela
Vides-Herrera, Carlos Arturo
Pardo-García, Aldo
Early flood warning system for the Arauca river based on artificial intelligence techniques
title Early flood warning system for the Arauca river based on artificial intelligence techniques
title_alt Sistema de alerta temprana de inundaciones para el río Arauca basado en técnicas de inteligencia artificial
title_full Early flood warning system for the Arauca river based on artificial intelligence techniques
title_fullStr Early flood warning system for the Arauca river based on artificial intelligence techniques
title_full_unstemmed Early flood warning system for the Arauca river based on artificial intelligence techniques
title_short Early flood warning system for the Arauca river based on artificial intelligence techniques
title_sort early flood warning system for the arauca river based on artificial intelligence techniques
topic flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
topic_facet flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274
work_keys_str_mv AT cardenasrodriguezsorangela earlyfloodwarningsystemforthearaucariverbasedonartificialintelligencetechniques
AT videsherreracarlosarturo earlyfloodwarningsystemforthearaucariverbasedonartificialintelligencetechniques
AT pardogarciaaldo earlyfloodwarningsystemforthearaucariverbasedonartificialintelligencetechniques
AT cardenasrodriguezsorangela sistemadealertatempranadeinundacionesparaelrioaraucabasadoentecnicasdeinteligenciaartificial
AT videsherreracarlosarturo sistemadealertatempranadeinundacionesparaelrioaraucabasadoentecnicasdeinteligenciaartificial
AT pardogarciaaldo sistemadealertatempranadeinundacionesparaelrioaraucabasadoentecnicasdeinteligenciaartificial