Measuring Representativeness Using Covering Array Principles
Representativeness is an important data quality characteristic in data science processes; a data sample is said to be representative when it reflects a larger group as accurately as possible. Having low representativeness indices in the data can lead to the generation of biased models. Hence, this s...
Auteurs principaux: | Castro-Romero, Alexander, Cobos-Lozada, Carlos-Alberto |
---|---|
Format: | Online |
Langue: | eng |
Publié: |
Universidad Pedagógica y Tecnológica de Colombia
2023
|
Sujets: | |
Accès en ligne: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15314 |
- Documents similaires
-
Metaheuristic algorithms for building Covering Arrays: A review
par: Timaná-Peña, Jimena Adriana, et autres
Publié: (2016) -
Variables characterization by using computing intelligence to identify the cattle s health disorders
par: Sarmiento-Pacanchique, Edgar Leonardo, et autres
Publié: (2015) -
Proposal for the Evaluation of Open Data Portals
par: Herrera-Melo, Camila Andrea, et autres
Publié: (2019) -
The value of open data government: a quality assessment approach
par: Maestre-Gongora , Gina, et autres
Publié: (2021) -
Knowing the Big Data
par: Camargo-Vega, Juan José, et autres
Publié: (2014)