Measuring Representativeness Using Covering Array Principles
Representativeness is an important data quality characteristic in data science processes; a data sample is said to be representative when it reflects a larger group as accurately as possible. Having low representativeness indices in the data can lead to the generation of biased models. Hence, this s...
Main Authors: | Castro-Romero, Alexander, Cobos-Lozada, Carlos-Alberto |
---|---|
פורמט: | Online |
שפה: | eng |
יצא לאור: |
Universidad Pedagógica y Tecnológica de Colombia
2023
|
נושאים: | |
גישה מקוונת: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15314 |
- פריטים דומים
-
Metaheuristic algorithms for building Covering Arrays: A review
מאת: Timaná-Peña, Jimena Adriana, et al.
יצא לאור: (2016) -
Variables characterization by using computing intelligence to identify the cattle s health disorders
מאת: Sarmiento-Pacanchique, Edgar Leonardo, et al.
יצא לאור: (2015) -
Proposal for the Evaluation of Open Data Portals
מאת: Herrera-Melo, Camila Andrea, et al.
יצא לאור: (2019) -
The value of open data government: a quality assessment approach
מאת: Maestre-Gongora , Gina, et al.
יצא לאור: (2021) -
Knowing the Big Data
מאת: Camargo-Vega, Juan José, et al.
יצא לאור: (2014)