Measuring Representativeness Using Covering Array Principles
Representativeness is an important data quality characteristic in data science processes; a data sample is said to be representative when it reflects a larger group as accurately as possible. Having low representativeness indices in the data can lead to the generation of biased models. Hence, this s...
主要な著者: | Castro-Romero, Alexander, Cobos-Lozada, Carlos-Alberto |
---|---|
フォーマット: | Online |
言語: | eng |
出版事項: |
Universidad Pedagógica y Tecnológica de Colombia
2023
|
主題: | |
オンライン・アクセス: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15314 |
- 類似資料
-
Metaheuristic algorithms for building Covering Arrays: A review
著者:: Timaná-Peña, Jimena Adriana, 等
出版事項: (2016) -
Variables characterization by using computing intelligence to identify the cattle s health disorders
著者:: Sarmiento-Pacanchique, Edgar Leonardo, 等
出版事項: (2015) -
Proposal for the Evaluation of Open Data Portals
著者:: Herrera-Melo, Camila Andrea, 等
出版事項: (2019) -
The value of open data government: a quality assessment approach
著者:: Maestre-Gongora , Gina, 等
出版事項: (2021) -
Knowing the Big Data
著者:: Camargo-Vega, Juan José, 等
出版事項: (2014)