Data analysis of thefts in the city of Medellin from a descriptive approach

This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the t...

Full description

Bibliographic Details
Main Authors: Maestre-Gongora, Gina, Acuña-Castellanos, Camilo Andrés, Londoño-Bedoya, Edwar, García-García, Sergio
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2023
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
_version_ 1801706010111377408
author Maestre-Gongora, Gina
Acuña-Castellanos, Camilo Andrés
Londoño-Bedoya, Edwar
García-García, Sergio
author_facet Maestre-Gongora, Gina
Acuña-Castellanos, Camilo Andrés
Londoño-Bedoya, Edwar
García-García, Sergio
author_sort Maestre-Gongora, Gina
collection OJS
description This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizens
format Online
id oai:oai.revistas.uptc.edu.co:article-16059
institution Revista de Investigación, Desarrollo e Innovación (RIDI)
language spa
publishDate 2023
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-160592023-10-20T12:23:25Z Data analysis of thefts in the city of Medellin from a descriptive approach Análisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivo Maestre-Gongora, Gina Acuña-Castellanos, Camilo Andrés Londoño-Bedoya, Edwar García-García, Sergio open data; theft; machine learning; business intelligence datos abiertos; robo; aprendizaje automático; inteligencia de negocios This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizens Este artículo tiene por objetivo identificar las tendencias y patrones de hurto en la ciudad de Medellín en el periodo 2014-2020, usando datos abiertos de gobierno. Se utiliza como metodología la inteligencia de negocios para el análisis de datos descriptivo. Se analizan variables como barrios, modalidades, tipo de hurto y se realiza la predicción de la variable modalidad de hurto. Los resultados muestran que históricamente el segundo semestre del año tiene la mayor tendencia de incidencias, donde la mayoría de robos suceden en los lugares públicos con un 60% sin el uso de armas. Se identificó que, debido a la pandemia de COVID, las tendencias históricas presentaron alteraciones notables, pero una vez levantadas las restricciones, estas retomaron las tendencias de alzas en robos en las condiciones de prepandemia. Se concluye que el análisis de datos abiertos brinda información relevante para la toma de decisiones de los ciudadanos Universidad Pedagógica y Tecnológica de Colombia 2023-02-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/xml https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059 10.19053/20278306.v13.n1.2023.16059 Revista de Investigación, Desarrollo e Innovación; Vol. 13 No. 1 (2023): Enero-Junio; 173-184 Revista de Investigación, Desarrollo e Innovación; Vol. 13 Núm. 1 (2023): Enero-Junio; 173-184 2389-9417 2027-8306 spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13097 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13561 Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación
spellingShingle open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
Maestre-Gongora, Gina
Acuña-Castellanos, Camilo Andrés
Londoño-Bedoya, Edwar
García-García, Sergio
Data analysis of thefts in the city of Medellin from a descriptive approach
title Data analysis of thefts in the city of Medellin from a descriptive approach
title_alt Análisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivo
title_full Data analysis of thefts in the city of Medellin from a descriptive approach
title_fullStr Data analysis of thefts in the city of Medellin from a descriptive approach
title_full_unstemmed Data analysis of thefts in the city of Medellin from a descriptive approach
title_short Data analysis of thefts in the city of Medellin from a descriptive approach
title_sort data analysis of thefts in the city of medellin from a descriptive approach
topic open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
topic_facet open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
work_keys_str_mv AT maestregongoragina dataanalysisoftheftsinthecityofmedellinfromadescriptiveapproach
AT acunacastellanoscamiloandres dataanalysisoftheftsinthecityofmedellinfromadescriptiveapproach
AT londonobedoyaedwar dataanalysisoftheftsinthecityofmedellinfromadescriptiveapproach
AT garciagarciasergio dataanalysisoftheftsinthecityofmedellinfromadescriptiveapproach
AT maestregongoragina analisisdedatossobreloshurtosenlaciudaddemedellindesdeunenfoquedescriptivo
AT acunacastellanoscamiloandres analisisdedatossobreloshurtosenlaciudaddemedellindesdeunenfoquedescriptivo
AT londonobedoyaedwar analisisdedatossobreloshurtosenlaciudaddemedellindesdeunenfoquedescriptivo
AT garciagarciasergio analisisdedatossobreloshurtosenlaciudaddemedellindesdeunenfoquedescriptivo