Electronic control arm using electromyographic signals

The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, w...

Full description

Saved in:
Bibliographic Details
Main Authors: García-Pinzón, Jorge Andrés, Mendoza, Luis Enrique, Flórez, Elkin Gregorio
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2015
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1801706070460071936
author García-Pinzón, Jorge Andrés
Mendoza, Luis Enrique
Flórez, Elkin Gregorio
author_facet García-Pinzón, Jorge Andrés
Mendoza, Luis Enrique
Flórez, Elkin Gregorio
author_sort García-Pinzón, Jorge Andrés
collection OJS
description The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, we performed a signals preprocessing, to remove the less important information and to recognize the interest areas. Then the patterns were extracted and classified. The techniques used were: The wavelet analysis (AW), the principal components analysis (PCA), the Fourier transformed (FT), the discrete cosine transformed (DCT), the support vector machines (SVM) and the artificial neural networks (ANR). In this paper we demonstrated, that the methodology stated, allows to realize a process of classification with a superior performance to 95%. There were recorded more than four thousands signals.
format Online
id oai:oai.revistas.uptc.edu.co:article-3554
institution Revista Facultad de Ingeniería
language spa
publishDate 2015
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-35542018-11-21T00:48:30Z Electronic control arm using electromyographic signals Control de brazo electrónico usando señales electromiográficas García-Pinzón, Jorge Andrés Mendoza, Luis Enrique Flórez, Elkin Gregorio electronic arm control electromyography ANR SVM patterns extraction wavelet transformed Brazo electrónico Electromiografía Extracción de patrones MSV RNA Transformada wavelet. The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, we performed a signals preprocessing, to remove the less important information and to recognize the interest areas. Then the patterns were extracted and classified. The techniques used were: The wavelet analysis (AW), the principal components analysis (PCA), the Fourier transformed (FT), the discrete cosine transformed (DCT), the support vector machines (SVM) and the artificial neural networks (ANR). In this paper we demonstrated, that the methodology stated, allows to realize a process of classification with a superior performance to 95%. There were recorded more than four thousands signals. Los trabajos enfocados en la extracción de patrones en señales electromiográficas (SEMG) han venido creciendo debido a sus múltiples aplicaciones. En este artículo se presenta una aplicación en la cual se implementa un sistema electrónico para el registro de las SEMG de la extremidad superior en un sujeto, con el fin de controlar de forma remota un brazo electrónico. Se realizó una etapa de preprocesamiento de las señales registradas, para eliminar información poco relevante, y reconocimiento de zonas de interés, enseguida se extraen los patrones y se clasifican. Las técnicas utilizadas fueron: análisis wavelet (AW), análisis de componentes principales (ACP), transformada de fourier (TF), transformada del coseno discreta (TDC), energía, máquinas de soporte vectorial (MSV o SVM) y redes neuronales (RNA). En este artículo se demuestra que la metodología planteada permite realizar un proceso de clasificación con un rendimiento superior al 95%. Se registraron más de 4000 señales. Universidad Pedagógica y Tecnológica de Colombia 2015-05-05 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion investigation application/pdf text/html https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554 10.19053/01211129.3554 Revista Facultad de Ingeniería; Vol. 24 No. 39 (2015); 71-84 Revista Facultad de Ingeniería; Vol. 24 Núm. 39 (2015); 71-84 2357-5328 0121-1129 spa https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/3164 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/4327
spellingShingle electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
García-Pinzón, Jorge Andrés
Mendoza, Luis Enrique
Flórez, Elkin Gregorio
Electronic control arm using electromyographic signals
title Electronic control arm using electromyographic signals
title_alt Control de brazo electrónico usando señales electromiográficas
title_full Electronic control arm using electromyographic signals
title_fullStr Electronic control arm using electromyographic signals
title_full_unstemmed Electronic control arm using electromyographic signals
title_short Electronic control arm using electromyographic signals
title_sort electronic control arm using electromyographic signals
topic electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
topic_facet electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554
work_keys_str_mv AT garciapinzonjorgeandres electroniccontrolarmusingelectromyographicsignals
AT mendozaluisenrique electroniccontrolarmusingelectromyographicsignals
AT florezelkingregorio electroniccontrolarmusingelectromyographicsignals
AT garciapinzonjorgeandres controldebrazoelectronicousandosenaleselectromiograficas
AT mendozaluisenrique controldebrazoelectronicousandosenaleselectromiograficas
AT florezelkingregorio controldebrazoelectronicousandosenaleselectromiograficas