Characterizing the survival of women with invasive cervical cancer by using data mining

In this paper, one of the results of the research project entitled: Detection of survival patterns in diagnosed women with invasive cervical cancer with data mining techniques, using as the main source the information stored in the database of Cancer Registry of the Municipality of Pasto (Colombia)...

Full description

Bibliographic Details
Main Authors: Timarán-Pereira, Ricardo, Yépez-Chamorro, Maria Clara
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2016
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/4315
_version_ 1801705985820065792
author Timarán-Pereira, Ricardo
Yépez-Chamorro, Maria Clara
author_facet Timarán-Pereira, Ricardo
Yépez-Chamorro, Maria Clara
author_sort Timarán-Pereira, Ricardo
collection OJS
description In this paper, one of the results of the research project entitled: Detection of survival patterns in diagnosed women with invasive cervical cancer with data mining techniques, using as the main source the information stored in the database of Cancer Registry of the Municipality of Pasto (Colombia) is presented here. Applying the CRISP-DM methodology, a data repository with information from diagnosed women with invasive cervical cancer during the period between 1998 and 2002 with an observation window until 2007, was built, cleaned, and transformed. The main socioeconomic and clinical factors related to survival of this population group, using classification, association, and clustering tasks were detected. The principal pattern discovered was that if a woman exceeds 52 months after the time of diagnosis of invasive cervical cancer, she will be characterized as a cancer survivor. 
format Online
id oai:oai.revistas.uptc.edu.co:article-4315
institution Revista de Investigación, Desarrollo e Innovación (RIDI)
language spa
publishDate 2016
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-43152022-06-15T15:52:00Z Characterizing the survival of women with invasive cervical cancer by using data mining Caracterización de la supervivencia de mujeres con cáncer invasivo de cuello uterino usando minería de datos Timarán-Pereira, Ricardo Yépez-Chamorro, Maria Clara cervical cancer CRISP-DM survival patterns data mining. cáncer de cuello uterino CRISP-DM patrones de supervivencia minería de datos. In this paper, one of the results of the research project entitled: Detection of survival patterns in diagnosed women with invasive cervical cancer with data mining techniques, using as the main source the information stored in the database of Cancer Registry of the Municipality of Pasto (Colombia) is presented here. Applying the CRISP-DM methodology, a data repository with information from diagnosed women with invasive cervical cancer during the period between 1998 and 2002 with an observation window until 2007, was built, cleaned, and transformed. The main socioeconomic and clinical factors related to survival of this population group, using classification, association, and clustering tasks were detected. The principal pattern discovered was that if a woman exceeds 52 months after the time of diagnosis of invasive cervical cancer, she will be characterized as a cancer survivor.  En este artículo se presenta uno de los resultados del proyecto de investigación denominado: Detección de patrones de supervivencia en mujeres con cáncer invasivo de cuello uterino con técnicas de minería de datos , utilizando como fuente principal la información almacenada en la base de datos del Registro Poblacional de Cáncer del Municipio de Pasto (Colombia). Aplicando la metodología para proyectos de minería de datos CRISP-DM, se construyó, limpió y transformó un repositorio de datos con la información de las mujeres que fueron diagnosticadas con cáncer invasivo de cuello uterino entre los años 1998 y 2002, con una ventana de observación hasta el 2007. Se detectaron los principales factores socioeconómicos y clínicos asociados con la supervivencia de este grupo poblacional, utilizando las tareas de minería de datos: clasificación, asociación y agrupación. El patrón principal descubierto es aquel que caracteriza a una mujer con cáncer invasivo de cuello uterino como sobreviviente, si sobrepasa los 52 meses después del momento del diagnóstico del cáncer. Universidad Pedagógica y Tecnológica de Colombia 2016-12-07 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/4315 10.19053/20278306.v7.n1.2016.4315 Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 127-139 Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 127-139 2389-9417 2027-8306 spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/4315/4706 Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN
spellingShingle cervical cancer
CRISP-DM
survival patterns
data mining.
cáncer de cuello uterino
CRISP-DM
patrones de supervivencia
minería de datos.
Timarán-Pereira, Ricardo
Yépez-Chamorro, Maria Clara
Characterizing the survival of women with invasive cervical cancer by using data mining
title Characterizing the survival of women with invasive cervical cancer by using data mining
title_alt Caracterización de la supervivencia de mujeres con cáncer invasivo de cuello uterino usando minería de datos
title_full Characterizing the survival of women with invasive cervical cancer by using data mining
title_fullStr Characterizing the survival of women with invasive cervical cancer by using data mining
title_full_unstemmed Characterizing the survival of women with invasive cervical cancer by using data mining
title_short Characterizing the survival of women with invasive cervical cancer by using data mining
title_sort characterizing the survival of women with invasive cervical cancer by using data mining
topic cervical cancer
CRISP-DM
survival patterns
data mining.
cáncer de cuello uterino
CRISP-DM
patrones de supervivencia
minería de datos.
topic_facet cervical cancer
CRISP-DM
survival patterns
data mining.
cáncer de cuello uterino
CRISP-DM
patrones de supervivencia
minería de datos.
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/4315
work_keys_str_mv AT timaranpereiraricardo characterizingthesurvivalofwomenwithinvasivecervicalcancerbyusingdatamining
AT yepezchamorromariaclara characterizingthesurvivalofwomenwithinvasivecervicalcancerbyusingdatamining
AT timaranpereiraricardo caracterizaciondelasupervivenciademujeresconcancerinvasivodecuellouterinousandomineriadedatos
AT yepezchamorromariaclara caracterizaciondelasupervivenciademujeresconcancerinvasivodecuellouterinousandomineriadedatos