Ripeness determination in feijoa fruits by using a computer vision system and colour. information
Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserv...
Main Authors: | , |
---|---|
Format: | Online |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Subjects: | |
Online Access: | https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603 |
_version_ | 1801705987506176000 |
---|---|
author | Bonilla-González, Juan Pablo Prieto-Ortiz, Flavio Augusto |
author_facet | Bonilla-González, Juan Pablo Prieto-Ortiz, Flavio Augusto |
author_sort | Bonilla-González, Juan Pablo |
collection | OJS |
description | Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study. |
format | Online |
id | oai:oai.revistas.uptc.edu.co:article-5603 |
institution | Revista de Investigación, Desarrollo e Innovación (RIDI) |
language | spa |
publishDate | 2016 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | ojs |
spelling | oai:oai.revistas.uptc.edu.co:article-56032018-07-10T22:11:53Z Ripeness determination in feijoa fruits by using a computer vision system and colour. information Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color Bonilla-González, Juan Pablo Prieto-Ortiz, Flavio Augusto Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study. Determinar el estado de madurez de productos agrícolas, generalmente depende de un análisis realizado por expertos humanos. La decisión final sobre el estado de madurez donde se encuentra el producto, resulta de correlacionar algunas de sus propiedades físicas con características químicas e internas del fruto. La necesidad de preservar la integridad del fruto en dicho análisis, hace necesario la implementación de tecnologías que emitan un juicio sobre el estado del mismo, sin necesidad de destruirlo. El uso del índice de color como propiedad física, contribuye a la solución de este problema. En este documento, se presenta un sistema de visión por computador para clasificar en tres estados de madurez un fruto exótico específico, feijoa -Acca Sellowiana-. Los resultados obtenidos a partir de la clasificación, utilizando diferentes clasificadores, permiten obtener una respuesta superior al 90%, para 156 imágenes de frutos de feijoa utilizadas en el estudio. Universidad Pedagógica y Tecnológica de Colombia 2016-08-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603 10.19053/20278306.v7.n1.2016.5603 Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 111-126 Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 111-126 2389-9417 2027-8306 spa https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603/4705 Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN |
spellingShingle | Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. Bonilla-González, Juan Pablo Prieto-Ortiz, Flavio Augusto Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title | Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_alt | Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color |
title_full | Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_fullStr | Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_full_unstemmed | Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_short | Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_sort | ripeness determination in feijoa fruits by using a computer vision system and colour information |
topic | Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. |
topic_facet | Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. |
url | https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603 |
work_keys_str_mv | AT bonillagonzalezjuanpablo ripenessdeterminationinfeijoafruitsbyusingacomputervisionsystemandcolourinformation AT prietoortizflavioaugusto ripenessdeterminationinfeijoafruitsbyusingacomputervisionsystemandcolourinformation AT bonillagonzalezjuanpablo determinaciondelestadodemaduraciondefrutosdefeijoamedianteunsistemadevisionporcomputadorutilizandoinformaciondecolor AT prietoortizflavioaugusto determinaciondelestadodemaduraciondefrutosdefeijoamedianteunsistemadevisionporcomputadorutilizandoinformaciondecolor |