Assessing the behavior of machine learning methods to predict the activity of antimicrobial peptides
This study demonstrates the importance of obtaining statistically stable results when using machine learning methods to predict the activity of antimicrobial peptides, due to the cost and complexity of the chemical processes involved in cases where datasets are particularly small (less than a few hu...
Hlavní autoři: | Camacho, Francy Liliana, Torres-Sáez, Rodrigo, Ramos-Pollán, Raúl |
---|---|
Médium: | Online |
Jazyk: | eng |
Vydáno: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Témata: | |
On-line přístup: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5834 |
- Podobné jednotky
-
Machine learning methods in prospective studies after an example of financing innovation in Colombia
Autor: Padilla-Ospina, Ana Milena, a další
Vydáno: (2020) -
Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
Autor: Ordoñez-Palacios, Luis Eduardo, a další
Vydáno: (2020) -
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
Autor: Ortega Monsalve, Manuela, a další
Vydáno: (2023) -
Detection of Homicide Trends in Colombia Using Machine Learning
Autor: Ordoñez-Eraso, Hugo Armando, a další
Vydáno: (2019) -
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
Autor: Vargas-Zapata, Mateo, a další
Vydáno: (2022)