Assessing the behavior of machine learning methods to predict the activity of antimicrobial peptides
This study demonstrates the importance of obtaining statistically stable results when using machine learning methods to predict the activity of antimicrobial peptides, due to the cost and complexity of the chemical processes involved in cases where datasets are particularly small (less than a few hu...
Main Authors: | Camacho, Francy Liliana, Torres-Sáez, Rodrigo, Ramos-Pollán, Raúl |
---|---|
Format: | Online |
Sprog: | eng |
Udgivet: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Fag: | |
Online adgang: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5834 |
- Lignende værker
-
Machine learning methods in prospective studies after an example of financing innovation in Colombia
af: Padilla-Ospina, Ana Milena, et al.
Udgivet: (2020) -
Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
af: Ordoñez-Palacios, Luis Eduardo, et al.
Udgivet: (2020) -
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
af: Ortega Monsalve, Manuela, et al.
Udgivet: (2023) -
Detection of Homicide Trends in Colombia Using Machine Learning
af: Ordoñez-Eraso, Hugo Armando, et al.
Udgivet: (2019) -
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
af: Vargas-Zapata, Mateo, et al.
Udgivet: (2022)