Assessing the behavior of machine learning methods to predict the activity of antimicrobial peptides
This study demonstrates the importance of obtaining statistically stable results when using machine learning methods to predict the activity of antimicrobial peptides, due to the cost and complexity of the chemical processes involved in cases where datasets are particularly small (less than a few hu...
Κύριοι συγγραφείς: | Camacho, Francy Liliana, Torres-Sáez, Rodrigo, Ramos-Pollán, Raúl |
---|---|
Μορφή: | Online |
Γλώσσα: | eng |
Έκδοση: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Θέματα: | |
Διαθέσιμο Online: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5834 |
Παρόμοια τεκμήρια
- Παρόμοια τεκμήρια
-
Machine learning methods in prospective studies after an example of financing innovation in Colombia
ανά: Padilla-Ospina, Ana Milena, κ.ά.
Έκδοση: (2020) -
Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
ανά: Ordoñez-Palacios, Luis Eduardo, κ.ά.
Έκδοση: (2020) -
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
ανά: Ortega Monsalve, Manuela, κ.ά.
Έκδοση: (2023) -
Detection of Homicide Trends in Colombia Using Machine Learning
ανά: Ordoñez-Eraso, Hugo Armando, κ.ά.
Έκδοση: (2019) -
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
ανά: Vargas-Zapata, Mateo, κ.ά.
Έκδοση: (2022)