Assessing the behavior of machine learning methods to predict the activity of antimicrobial peptides
This study demonstrates the importance of obtaining statistically stable results when using machine learning methods to predict the activity of antimicrobial peptides, due to the cost and complexity of the chemical processes involved in cases where datasets are particularly small (less than a few hu...
Auteurs principaux: | Camacho, Francy Liliana, Torres-Sáez, Rodrigo, Ramos-Pollán, Raúl |
---|---|
Format: | Online |
Langue: | eng |
Publié: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Sujets: | |
Accès en ligne: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5834 |
- Documents similaires
-
Machine learning methods in prospective studies after an example of financing innovation in Colombia
par: Padilla-Ospina, Ana Milena, et autres
Publié: (2020) -
Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
par: Ordoñez-Palacios, Luis Eduardo, et autres
Publié: (2020) -
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
par: Ortega Monsalve, Manuela, et autres
Publié: (2023) -
Detection of Homicide Trends in Colombia Using Machine Learning
par: Ordoñez-Eraso, Hugo Armando, et autres
Publié: (2019) -
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
par: Vargas-Zapata, Mateo, et autres
Publié: (2022)