Thermal transfer analysis of tubes with extended surface with fractal design

Heat exchangers are formed by tubes with extended surfaces that improve the transfer of heat between two media (e.g., a solid and a liquid in motion). This paper presents the design of an extended surface tube with fractal geometry, corresponding to the Koch snowflake and the Cesaro curve. For the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Llano-Sánchez, Luis Eduardo, Domínguez-Cajeli, Darío Manuel, Ruiz-Cárdenas, Luis Carlos
Formato: Online
Lenguaje:eng
Publicado: Universidad Pedagógica y Tecnológica de Colombia 2018
Materias:
Acceso en línea:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7749
Descripción
Sumario:Heat exchangers are formed by tubes with extended surfaces that improve the transfer of heat between two media (e.g., a solid and a liquid in motion). This paper presents the design of an extended surface tube with fractal geometry, corresponding to the Koch snowflake and the Cesaro curve. For the design, we used the CAD computational tool, and afterwards we performed the CAE finite element analysis and verified the thermal behavior of the designed tube. We were able to reduce the heat transfer time and increase the heat flow in the system in the following manner: for smooth tube, 250 W/m2; for Koch surface, 500 W/m2; for six fins, 1450 W/m2; and for Cesaro curve, 3600 W/m2. These results demonstrate the limits of the design and the advantages of its implementation in machinery such as condensers, heat exchangers, and boilers.