Manufacture of titanium dioxide scaffolds for medical applications

The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomaterials hav...

Full description

Bibliographic Details
Main Authors: Cuervo-Osorio, Giovanni, Jiménez-Valencia, Ana María, Mosquera-Agualimpia, Cristian, Escobar-Sierra, Diana Marcela
Format: Online
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2018
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8017
_version_ 1801706082967486464
author Cuervo-Osorio, Giovanni
Jiménez-Valencia, Ana María
Mosquera-Agualimpia, Cristian
Escobar-Sierra, Diana Marcela
author_facet Cuervo-Osorio, Giovanni
Jiménez-Valencia, Ana María
Mosquera-Agualimpia, Cristian
Escobar-Sierra, Diana Marcela
author_sort Cuervo-Osorio, Giovanni
collection OJS
description The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomaterials have been developed as platforms for cell growth (scaffolds). Biomaterials and bones have similar properties that facilitate the integration between the material and the bone tissue, helping the tissue to regenerate. Traditional ceramic implants are hydroxyapatite, but given their low mechanical properties, they have been replaced with better inert ceramics. Therefore, this study aims at manufacturing titanium dioxide scaffolds through various techniques, using collagen, polyvinyl alcohol (PVA), sodium chloride, and corn flour as binders to influence pore size. Scaffolds were characterized by a Scanning Electron Microscope (SEM) and evaluated by compression and degradability tests in a Simulated Body Fluid (SBF). The prepared scaffolds had mechanical behaviors with ranges within the bone parameters; among them, the scaffold obtained by infiltration with 10% PVA presented values of compression strength (6.75 MPa), elastic modulus (0.23 GPa), and porosities (54-67%) closer to the values of the trabecular bone.
format Online
id oai:oai.revistas.uptc.edu.co:article-8017
institution Revista Facultad de Ingeniería
language eng
publishDate 2018
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-80172022-06-15T16:03:28Z Manufacture of titanium dioxide scaffolds for medical applications Elaboración de scaffolds de dióxido de titanio para aplicaciones médicas Cuervo-Osorio, Giovanni Jiménez-Valencia, Ana María Mosquera-Agualimpia, Cristian Escobar-Sierra, Diana Marcela compression molding infiltration lyophilization scaffolds infiltración moldeo por compresión liofilización scaffolds The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomaterials have been developed as platforms for cell growth (scaffolds). Biomaterials and bones have similar properties that facilitate the integration between the material and the bone tissue, helping the tissue to regenerate. Traditional ceramic implants are hydroxyapatite, but given their low mechanical properties, they have been replaced with better inert ceramics. Therefore, this study aims at manufacturing titanium dioxide scaffolds through various techniques, using collagen, polyvinyl alcohol (PVA), sodium chloride, and corn flour as binders to influence pore size. Scaffolds were characterized by a Scanning Electron Microscope (SEM) and evaluated by compression and degradability tests in a Simulated Body Fluid (SBF). The prepared scaffolds had mechanical behaviors with ranges within the bone parameters; among them, the scaffold obtained by infiltration with 10% PVA presented values of compression strength (6.75 MPa), elastic modulus (0.23 GPa), and porosities (54-67%) closer to the values of the trabecular bone. El sistema esquelético es vulnerable a lesiones y a perder hueso a lo largo de los años, lo que hace necesario el uso de implantes autólogos o alogénicos; sin embargo, estos implantes tienen complicaciones, como la cantidad limitada de hueso que se extrae y la muerte celular en el sitio de extracción; por lo tanto, se han desarrollado biomateriales como plataformas para el crecimiento celular (scaffolds). Los biomateriales tienen propiedades similares a las del hueso, lo que facilita su integración con el tejido óseo, ayudando a la regeneración de este. Tradicionales los implantes de cerámica son de hidroxiapatitas, pero, debido a sus pobres propiedades mecánicas, han sido reemplazados por cerámicas inertes, que tienen mejores propiedades mecánicas. Por lo tanto, el objetivo de este estudio fue fabricar scaffolds de dióxido de titanio, por medio de diferentes técnicas, utilizando colágeno, polivinil alcohol (PVA), cloruro de sodio y harina de maíz como aglutinante para influenciar el tamaño del poro. Los scaffolds se caracterizaron por medio de microscopía electrónica de barrido (SEM) y se evaluaron con pruebas de compresión y degradabilidad en un fluido corporal simulado (SBF). Los scaffolds elaborados presentaron comportamientos mecánicos que están entre el rango normal del hueso; el scaffold obtenido por medio de infiltración, con 10 % de PVA, presentó valores de fuerza de compresión (6.75 MPa), módulos elásticos (0.23 GPa) y porosidad (54-67 %) cercanos a aquellos reportados para el hueso trabecular. Universidad Pedagógica y Tecnológica de Colombia 2018-05-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion research investigación application/pdf application/xml https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8017 10.19053/01211129.v27.n48.2018.8017 Revista Facultad de Ingeniería; Vol. 27 No. 48 (2018); 17-25 Revista Facultad de Ingeniería; Vol. 27 Núm. 48 (2018); 17-25 2357-5328 0121-1129 eng https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8017/6461 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8017/7185 Copyright (c) 2018 Giovanni Cuervo-Osorio, Ana María Jiménez-Valencia, Cristian Mosquera-Agualimpia, Diana Marcela Escobar-Sierra
spellingShingle compression molding
infiltration
lyophilization
scaffolds
infiltración
moldeo por compresión
liofilización
scaffolds
Cuervo-Osorio, Giovanni
Jiménez-Valencia, Ana María
Mosquera-Agualimpia, Cristian
Escobar-Sierra, Diana Marcela
Manufacture of titanium dioxide scaffolds for medical applications
title Manufacture of titanium dioxide scaffolds for medical applications
title_alt Elaboración de scaffolds de dióxido de titanio para aplicaciones médicas
title_full Manufacture of titanium dioxide scaffolds for medical applications
title_fullStr Manufacture of titanium dioxide scaffolds for medical applications
title_full_unstemmed Manufacture of titanium dioxide scaffolds for medical applications
title_short Manufacture of titanium dioxide scaffolds for medical applications
title_sort manufacture of titanium dioxide scaffolds for medical applications
topic compression molding
infiltration
lyophilization
scaffolds
infiltración
moldeo por compresión
liofilización
scaffolds
topic_facet compression molding
infiltration
lyophilization
scaffolds
infiltración
moldeo por compresión
liofilización
scaffolds
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8017
work_keys_str_mv AT cuervoosoriogiovanni manufactureoftitaniumdioxidescaffoldsformedicalapplications
AT jimenezvalenciaanamaria manufactureoftitaniumdioxidescaffoldsformedicalapplications
AT mosqueraagualimpiacristian manufactureoftitaniumdioxidescaffoldsformedicalapplications
AT escobarsierradianamarcela manufactureoftitaniumdioxidescaffoldsformedicalapplications
AT cuervoosoriogiovanni elaboraciondescaffoldsdedioxidodetitanioparaaplicacionesmedicas
AT jimenezvalenciaanamaria elaboraciondescaffoldsdedioxidodetitanioparaaplicacionesmedicas
AT mosqueraagualimpiacristian elaboraciondescaffoldsdedioxidodetitanioparaaplicacionesmedicas
AT escobarsierradianamarcela elaboraciondescaffoldsdedioxidodetitanioparaaplicacionesmedicas