Some homological properties of Jordan plane

The Jordan plane can be seen as a quotient algebra, as a graded Ore extension and as a graded skew PBW extension. Using these interpretations, it is proved that the Jordan plane is an Artin-Schelter regular algebra and a skew Calabi-Yau algebra, in addition its Nakayama automorphis...

Full description

Bibliographic Details
Main Authors: Suárez Suárez, Hector Julio, Gómez Parada, Jonatan Andrés
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2018
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140
_version_ 1801706342395674624
author Suárez Suárez, Hector Julio
Gómez Parada, Jonatan Andrés
author_facet Suárez Suárez, Hector Julio
Gómez Parada, Jonatan Andrés
author_sort Suárez Suárez, Hector Julio
collection OJS
description The Jordan plane can be seen as a quotient algebra, as a graded Ore extension and as a graded skew PBW extension. Using these interpretations, it is proved that the Jordan plane is an Artin-Schelter regular algebra and a skew Calabi-Yau algebra, in addition its Nakayama automorphism is explicitly calculated.
format Online
id oai:oai.revistas.uptc.edu.co:article-8140
institution Revista Ciencia en Desarrollo
language spa
publishDate 2018
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-81402022-06-15T17:03:10Z Some homological properties of Jordan plane Algunas propiedades homológicas del plano de Jordan Suárez Suárez, Hector Julio Gómez Parada, Jonatan Andrés Plano de Jordan álgebras Artin-Schelter regulares álgebras Calabi-Yau torcidas automorfismo de Nakayama Álgebra Jordan plane, Artin-Schelter regular algebras, skew Calabi-Yau algebras, Nakayama automorphism The Jordan plane can be seen as a quotient algebra, as a graded Ore extension and as a graded skew PBW extension. Using these interpretations, it is proved that the Jordan plane is an Artin-Schelter regular algebra and a skew Calabi-Yau algebra, in addition its Nakayama automorphism is explicitly calculated. El plano de Jordan puede ser visto como un álgebra cociente, como una extensión de Ore graduada y como unaextensión PBW torcida graduada. Usando estas interpretaciones, se muestra de forma explícita que el plano de Jordan es un álgebra Artin-Schelter regular y Calabi-Yau torcida, además se calcula de forma explícita su automorfismo de Nakayama. Universidad Pedagógica y Tecnológica de Colombia 2018-07-04 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140 10.19053/01217488.v9.n2.2018.8140 Ciencia En Desarrollo; Vol. 9 No. 2 (2018): Vol 9, Núm. 2 (2018): Vol 9, Núm 2(2018): Julio- Diciembre; 69-82 Ciencia en Desarrollo; Vol. 9 Núm. 2 (2018): Vol 9, Núm. 2 (2018): Vol 9, Núm 2(2018): Julio- Diciembre; 69-82 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140/7259 Derechos de autor 2018 CIENCIA EN DESARROLLO
spellingShingle Plano de Jordan
álgebras Artin-Schelter regulares
álgebras Calabi-Yau torcidas
automorfismo de Nakayama
Álgebra
Jordan plane, Artin-Schelter regular algebras, skew Calabi-Yau algebras, Nakayama automorphism
Suárez Suárez, Hector Julio
Gómez Parada, Jonatan Andrés
Some homological properties of Jordan plane
title Some homological properties of Jordan plane
title_alt Algunas propiedades homológicas del plano de Jordan
title_full Some homological properties of Jordan plane
title_fullStr Some homological properties of Jordan plane
title_full_unstemmed Some homological properties of Jordan plane
title_short Some homological properties of Jordan plane
title_sort some homological properties of jordan plane
topic Plano de Jordan
álgebras Artin-Schelter regulares
álgebras Calabi-Yau torcidas
automorfismo de Nakayama
Álgebra
Jordan plane, Artin-Schelter regular algebras, skew Calabi-Yau algebras, Nakayama automorphism
topic_facet Plano de Jordan
álgebras Artin-Schelter regulares
álgebras Calabi-Yau torcidas
automorfismo de Nakayama
Álgebra
Jordan plane, Artin-Schelter regular algebras, skew Calabi-Yau algebras, Nakayama automorphism
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140
work_keys_str_mv AT suarezsuarezhectorjulio somehomologicalpropertiesofjordanplane
AT gomezparadajonatanandres somehomologicalpropertiesofjordanplane
AT suarezsuarezhectorjulio algunaspropiedadeshomologicasdelplanodejordan
AT gomezparadajonatanandres algunaspropiedadeshomologicasdelplanodejordan