Some homological properties of Jordan plane
The Jordan plane can be seen as a quotient algebra, as a graded Ore extension and as a graded skew PBW extension. Using these interpretations, it is proved that the Jordan plane is an Artin-Schelter regular algebra and a skew Calabi-Yau algebra, in addition its Nakayama automorphis...
Autores principales: | Suárez Suárez, Hector Julio, Gómez Parada, Jonatan Andrés |
---|---|
Formato: | Online |
Lenguaje: | spa |
Publicado: |
Universidad Pedagógica y Tecnológica de Colombia
2018
|
Materias: | |
Acceso en línea: | https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140 |
- Ejemplares similares
-
Algunas propiedades homológicas del plano de Jordan
por: Gómez Parada, Jonatan Andrés, et al.
Publicado: (2019) -
Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau Algebras with Skew PBW Extensions. (Algunas relaciones entre álgebras N-Koszul, Artin-Schelter regular y Calabi-Yau con extensiones PBW torcidas)
por: Suárez, Héctor, et al.
Publicado: (2015) -
χ property in graded skew PBW extensions
por: Suárez, Héctor, et al.
Publicado: (2021) -
Some Remarks About the Cyclic Homology of Skew PBW Extensions / Algunas observaciones sobre la homología cíclica de extensiones PBW torcidas
por: Suárez Suárez, Héctor Julio, et al.
Publicado: (2016) -
Hopf algebras and skew PBW extensions
por: Salcedo Plazas, Luis Alfonso
Publicado: (2019)