Summary: | A full multiobjective approach is employed in this paper to deal with a stochastic multiobjective capacitated vehicle routing problem (CVRP). In this version of the problem, the demand is considered to be deterministic, but the travel times are assumed to be stochastic. A soft time window is tied to every customer and there is a penalty for starting the service outside the time window. Two objectives are minimized, the total length and the time window penalty. The suggested solution method includes a non-dominated sorting genetic algorithm (NSGA) together with a variable neighborhood search (VNS) heuristic. It was tested on instances from the literature and compared to a previous solution approach. The suggested method is able to find solutions that dominate some of the previously best known stochastic multiobjective CVRP solutions.
|