_version_ 1801705872395599872
author Lara Rodríguez, Juan Sebastián
Tosi Furtado, André
Altimiras Martin, Aleix
author_facet Lara Rodríguez, Juan Sebastián
Tosi Furtado, André
Altimiras Martin, Aleix
author_sort Lara Rodríguez, Juan Sebastián
collection DSpace
description Páginas 15-51.
format Artículo de revista
id repositorio.uptc.edu.co-001-2067
institution Repositorio Institucional UPTC
language deu
publishDate 2018
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-20672021-02-10T18:54:12Z Materias primas críticas y complejidad económica en América Latina Critical Raw Materials and Economic Complexity in Latin America Matérias-primas críticas e complexidade econômica na América Latina Lara Rodríguez, Juan Sebastián Tosi Furtado, André Altimiras Martin, Aleix Industria minera - Aspectos económicos Teoría económica Recursos naturales no renovables - América Latina Desarrollo económico - América Latina Recursos minerales Recursos naturales no renovables Desarrollo económico Innovación Tecnologías sostenibles Páginas 15-51. There are minerals that boost economic growth and which are essential for the development of sustainable technologies. These critical raw materials (CRMs) were determined by models created for complex economies. This paper aims to examine the mineral policies regarding CRMs of the main Latin-American economies, and the role of their respective National Innovation Systems (NIS) in the pursuit of greater economic complexity. This is achieved through a comparative assessment method applied to the mineral policies of the principal nations of the region —Brazil, Mexico, Argentina, Colombia and Chile. In this way, we found that due to the simplicity of these economies, as well as mineral policies that disregard their respective NIS, the increase of the economic complexity of the states in question is compromised. This is characterized by the exiguous value added through the interaction of knowledge and capabilities regarding their mineral resources and industry Existen minerales dinamizadores de crecimiento económico, fundamentales para el desarrollo de tecnologías sostenibles. Estas materias primas críticas (MPC) son determinadas por modelos creados para economías complejas. El objetivo de este artículo es examinar las políticas minerales de materias primas críticas en las principales economías de América Latina, y el papel de sus respectivos sistemas nacionales de innovación (SNI), en búsqueda de mayor complejidad económica, mediante un método de evaluación comparativo aplicado a la política mineral de las principales naciones de esta zona —Brasil, México, Argentina, Colombia y Chile—. Descubrimos que debido a la simplicidad de estas economías y de políticas minerales que desestiman sus respectivos sistemas nacionales de innovación, se compromete el aumento de la complejidad económica de los Estados en cuestión, la cual se caracteriza por la precaria adición de valor mediante la interacción de conocimiento y capacidades en relación con sus recursos minerales e industria. Existem minérios que impulsam o crescimento econômico e são fundamentais para o desenvolvimento de tecnologias sustentáveis, estas Matérias Primas Criticas (MPC) são determinadas mediante modelos criados pelas economias complexas. Portanto, o artigo tem por objetivo examinar as políticas minerais de MPC nas economias Latino Americanas de destaque, e o papel do respetivo Sistema Nacional de Inovação (SNI) na procura de uma maior complexidade econômica. Isto, por meio de um método de avaliação comparativa de política mineral, aplicado nos principais países da América Latina -Brasil, México, Argentina, Colômbia e Chile-. Desta maneira a gente descobriu que devido à simplicidade destas economias, e de políticas minerais que desestimam seus SNI, há um comprometimento do aumento da complexidade econômica dos países estudados. A qual é caraterizada pela precária adição de valor através da interação do conhecimento e capacidades, em torno dos recursos minerais e a indústria. Bibliografía: páginas 44-51. Artículo de investigación revisado por pares académicos. Artículos clasificados en Journal of economic Literatura JEL: Q32; O30; N56; L72; Q55. 2018-06-27T21:22:19Z 2018-06-27T21:22:19Z 2018-02-06 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Lara Rodríguez, J. S., Tosi Furtado, A. & Altimiras Martin, . (2018). Materias críticas y complejidad económica en América Latina. Revista Apuntes del CENES, 37(65), 15-51. DOI: https://doi.org/10.19053/01203053.v37.n65.2018.5426. http://repositorio.uptc.edu.co/handle/001/2067 0120-3053 2256-5779 En línea https://repositorio.uptc.edu.co/handle/001/2067 10.19053/01203053.v37.n65.2018.5426 deu Abramczyk, H. (2005). Introduction to Laser Spectroscopy (First). Amsterdam: Elsevier B.V. http://doi.org/10.1016/B978-044451662-6/50014-9 Altimiras-Martin, A. (2014). Analysing the Structure of the Economy Using Physical Input–Output Tables. Economic Systems Research, 26(4), 463– 485. http://doi.org/10.1080/09535314.2014.950637 Alves, A. R., & Coutinho, A. dos R. (2015). The Evolution of the Niobium Production in Brazil. Materials Research, 18(1), 106–112. http://doi. org/10.1590/1516-1439.276414 Auty, R. M. (2003). Natural resources, development models and sustainable development. In International Institute for Environment and Development, Environmental Economics Programe (pp. 0–25). Stevenage, UK: Earthprint Limited. Retrieved from http://eprints.lancs.ac.uk/9356/ Auty, R. M. (2007). The resources curse and sustainable development. In G. Atkinson, S. Dietz, & E. Neumayer (Eds.), Handbook of Sustainable Development (Vol. I, pp. 207–219). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing. Babar, I. M., Sabran, M. B. S., Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., Bhadra, S. K. (2014). Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications 1. Ukrainian Journal of Physical Optics, 15(4), 173–184. Becker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Introduction. In Erbium-Doped Fiber Amplifiers (First, pp. 1–11). London, GBR: Academic Press. http://doi.org/10.1016/B978-012084590-3/50003-X Bescher, E., Robson, S. R., Mackenzie, J. D., Patt, B., Iwanczyk, J., & Hoffman, E. J. (2000). New lutetium silicate scintillators. Journal of Sol-Gel Science and Technology, 19(3), 325–328. http://doi.org/10.1023/A:1008785616233 British Geological Survey. (2011). Tungsten profile. Nottingham. Retrieved from www.MineralsUK.com Brown, A. (2013). By the numbers: critical materials--weak spot for the U.S.? Mechanical Engineering [Serial Online], 135(5), 28–29. Retrieved from Business Source Complete, Ipswich, MA. Accessed July 2, 2014. Busch, J., Steinberger, J. K., Dawson, D. a, Purnell, P., & Roelich, K. (2014). Managing critical materials with a technology-specific stocks and flows model. Environmental Science & Technology, 48(2), 1298–305. http://doi. org/10.1021/es404877u Chakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic” tungsten to “green” neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. http://doi.org/10.1016/j.oregeorev.2014.06.008 Comisión Chilena del Cobre. (2014). Identificación de insumos críticos para el desarrollo de la minería en Chile. Santiago de Chile. Retrieved from http:// www.cochilco.cl/descargas/estudios/informes/Insumos Críticos/Estudio_ de_Insumos_Criticos_en_la_Mineria_Chilena_VF.pdf Csikósoya, A., Ćulkoya, K., & Antośoya, M. (2013). Magnesite industry in the Slovak Republic. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29(3). http://doi.org/10.2478/gospo-2013-0028 Dosi, G. (1982). Technological paradigsm and tecnological trajectories. Research Policy, 11, 147–162. http://doi.org/https://doi.org/10.1016/0048- 7333(82)90016-6 Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. The Science of the Total Environment, 461–462, 781–4. http://doi. org/10.1016/j.scitotenv.2013.02.099 Engholm, M., & Norin, L. (2008). Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Optics Express, 16, 1260–1268. http://doi.org/10.1364/OE.16.001260 Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology, 45, 7620–7630. http://doi.org/10.1021/es200563g European Commission. (2014). Report on critical raw materials for the EU, Report of the Ad hoc Working Group on defining critical raw materials. Brussels. Retrieved from http://ec.europa.eu/enterprise/policies/raw-materials/ files/docs/crm-report-on-critical-raw-materials_en.pdf Fromer, N. a., & Diallo, M. S. (2013). Nanotechnology and clean energy: sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 1–15. http://doi.org/10.1007/s11051-013-2011-9 Glöser, S., Tercero, L., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy, 44, 35–46. Goe, M., & Gaustad, G. (2014). Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 123, 387–396. http:// doi.org/10.1016/j.apenergy.2014.01.025 Goonan, T. (2011). Rare Earth Elements — End Use and Recyclability. Reston, Virginia: U.S. Geological Survey Scientific Investigations Report 2011– 5094. Retrieved from http://pubs.usgs.gov/sir/2011/5094/ Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., … Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070. http://doi.org/10.1021/ es203534z Granda, M., Blanco, C., Alvarez, P., Patrick, J. W., & Menéndez, R. (2014). Chemicals from coal coking. Chemical Reviews, 114(3), 1608–1636. http://doi.org/10.1021/cr400256y Gu, Y. F., Harada, H., & Ro, Y. (2004). Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. Jom, 56(9), 28– 33. http://doi.org/10.1007/s11837-004-0197-0 Gupta, V. K., Jain, R., Hamdan, a. J., Agarwal, S., & Bharti, A. K. (2010). A novel ion selective sensor for promethium determination. Analytica Chimica Acta, 681(1–2), 27–32. http://doi.org/10.1016/j.aca.2010.09.037 Halme, K., Piirainen, K., Vekinis, G., Ernst-Udo, S., & Viljamaa, K. (2012). Substitutionability of Critical Raw Materials. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Brussels: European Union. http://doi.org/10.2861/53633 Hartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. American Economic Association, 67(5), 972–974. Retrieved from http://www.jstor.org/stable/1828079 Hausmann, R., Hidalgo, C. a., Bustos, S., Coscia, M., Chung, S., Jimenez, J., … Yildirim, M. (2014). The Atlas of Economic Complexity: Mapping Paths to Prosperity (2014th ed.). Cambridge, MA, USA: Harvard University and Masachussetts Institute of Technology. Retrieved from http://atlas.cid.harvard.edu/rankings/ Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. a. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14. http://doi.org/10.1016/j.oregeorev.2012.12.001 Hensel, N. D. (2011). Economic Challenges in the Clean Energy Supply Chain: The Market for Rare Earth Minerals and Other Critical Inputs. Business Economics, 46(3), 171–184. http://doi.org/10.1057/be.2011.17 Hidalgo, C. a, & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570–10575. http://doi.org/10.1073/ pnas.0900943106 Hoppstock, K., & Sures, B. (2004). Platinum-Group Metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (pp. 1047–1086). Weinheim, Germany: WILEY-VCH Verlag GmbH&Co. KGaA. http://doi. org/10.1002/9783527619634.ch41 Hort, N., Mathaudhu, S., Ncclameggham, N., & Alderman, M. (2013). Magnesium Technology 2013. (M. & M. S. (TMS) Magnesium Committee of the Light Metals Division of The Minerals, Ed.). San Antonio: Wiley. Karl, T. L. (1997). Review The Paradox of Plenty: Oil Booms and Petro-States. Berkeley: University of California Press. Köhler, A. R., Bakker, C., & Peck, D. (2013). Critical materials: a reason for sustainable education of industrial designers and engineers. European Journal of Engineering Education, 38(4), 441–451. http://doi.org/10.1080/030437 97.2013.796341 Lara-Rodríguez, J. S., & Bermúdez, J. I. (2011). Perspectiva de la política de innovación y su monitoreo en la Unión Europea , 2010-2020. Finanzas Y Política Económica, 3(2), 105–126. Retrieved from http://ideas.repec. org/a/col/000443/009853.html Lara-Rodríguez, J. S., Rojas, C. A., & Martínez, J. A. (2015). Evolución organizacional : inducción socio-biológica para el entendimiento de la metáfora. AD-Minister, 26(enero-junio), 101–122. http://doi.org/10.17230/ad-minister.26.5 Lara-Rodríguez, J. S., Naranjo-Merchán, W., & Manosalva, S. R. (2017). Formación de capacidades para la formalización minera en Colombia: Un estudio de investigación acción. Cuadernos Del CENDES, 34(94), 97–126. Extraído de http://www.redalyc.org/pdf/403/40353171006.pdf Lundvall, B. Å., Vang, J., Chaminade, J., & Chaminade, C. (2009). Innovation system research and developing countries. In B. Å. Lundvall, K. J. Joseph, C. Chaminade, & J. Vang (Eds.), Handbook of Innovation Systems and Developing Countries, Building Domestic Capabilities in a Global Setting (pp. 1–30). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. http://doi.org/10.1016/j.resourpol.2012.07.001 McNeil, D. (2004). Beryllium. London, GBR. Retrieved from http://beryllium. eu/resources/Critical Material and Market Forces Literature/Beryllium Production and Outlook Roskill Mineral Sevices.pdf Melcher, F., & Buchholz, P. (2014). Germanium. In G. Gunn (Ed.), Critical Metals Handbook (First, pp. 177–203). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch8 Miller, M. (2010). Fluorspar. Mining Engineering, 62(6), 48–49. Retrieved from http://search.proquest.com/docview/578164423?accountid=8113 Ministério de Minas e Energia. (2011). Plano Nacional de Mineração 2030. Geologia, Mineração e Transformação Mineral. Brasilia. Retrieved from http:// www.mme.gov.br/documents/1138775/1732821/Book_PNM_2030_2. pdf/f7cc76c1-2d3b-4490-9d45-d725801c3522 Ministerio de Minas y Energía. (2012). Resolución número 18 0102 de 30 enero de 2012 “Por la cual se determinan unos minerales de interés estratégico para el país.” Bogotá D.C.: República de Colombia. Retrieved from http:// www.minminas.gov.co/documents/10180//23517//20337-10498.pdf Ministerio de Minería. (2015). Ministerio de Minería - Cuenta Pública. Santiago de Chile. Retrieved from http://www.gob.cl/cuenta-publica/2015/sectorial/2015_sectorial_ministerio-mineria.pdf Mishra, B., & Termsuksawad, P. (1999). Niobium. Review of Extraction, Processing, Propierties and Aplications of Reactive Metals, 83–134. http://doi. org/DOI: 10.1002/9781118788417.ch3 National Research Council of the National Academies. (2008). Minerals, critical minerals, and the U. S. economy. Washington, D.C.: National Academies Press : Washington, DC, United States. Retrieved from www.nap.edu Nelson, R. R., & Winter, S. G. (1982). An evolutionary Theory of Economic Change. Cambridge, MA, USA: Harvard University Press. Platias, S., Vatalis, K. I., & Charalabidis, G. (2013). Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz. Procedia Economics and Finance, 5(13), 597–604. http://doi.org/10.1016/ S2212-5671(13)00070-1 Ploeg, F. Van Der. (2011). Natural Resources: Curse or Blessing? Journal of Economic Literature, 49(2), 366–420. http://doi.org/10.1257/jel.49.2.366 Programa Nacional de Minería Alta Ley. (2016). Desde el cobre a la innovación. Roadmap Tecnológico 2015-2035. (Fundación Chile, Ed.). Santiago de Chile: A Impresores. República Argentina. (1887). Ley 1919 Código de Minería. Buenos Aires: Senado y Camara de Diputados. Retrieved from http://wp.cedha.net/ wp-content/uploads/2011/10/ley-minera-argentina.pdfSchwarz-Schampera, U. (2014). Indium. In G. Gunn (Ed.), Critical Metals handbook (First, Vol. 11, pp. 204–229). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch9 Secretaría de Economía. (2014). Programa de Desarrollo Minero 2013-2018. Ciudad de México. Retrieved from http://www.dof.gob.mx/nota_detalle. php?codigo=5344070&fecha=09/0 Secretaría de Política Económica y Planificación del Desarrollo. (2016). Informes de cadenas de valor: Minería Metalífera y Rocas de Aplicación. Buenos Aires. Retrieved from http://www.economia.gob.ar/peconomica/ docs/ficha_litio_dic_2011.pdf Senate Committee on Interior and Insular Affairs. (1954). Accessibility of strategic and critical materials to U.S. in time of war and for expanding economy. Accessibility of Strategic and Critical Materials to the United States in Time of War and for Our Expanding Economy. Report of the Committee on Interior and Insular Affairs Made by Its Minerals, Materials, and Fuels Economic Subcommittee pursuant to S. Re. Retrieved from http:// ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edslns&AN=LNSD80B819B-90F7F8E3&lang=es&site=e ds-live Sievers, H., Buijs, B., & Tercero Espinoza, L. a. (2012). Limits to the critical raw materials approach. Proceedings of the ICE - Waste and Resource Management, 165(4), 201–208. http://doi.org/10.1680/warm.12.00010 Slowinski, G., Latimer, D., & Mehlman, S. (2013). Research-on-Research: Dealing with Shortages of Critical Materials. Research-Technology Management, 56(5), 18–24. http://doi.org/10.5437/08956308X5605139 The World Bank. (2013). World Development Indicators: Science and technology. Washington, DC, USA: World Bank Group. Retrieved from http://wdi. worldbank.org/table/5.13 The World Bank. (2014). World Bank GDP Deflator. Retrieved from http://data. worldbank.org/indicator/NY.GDP.DEFL.KD.ZG) U.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. Reston, Virginia. Retrieved from http://minerals.usgs.gov/minerals/pubs/ mcs/2015/mcs2015.pdf Unidad de Planeación Minero Energética. (2013). Plan Nacional De Desarrollo Minero 2010 - 2014. Bogotá D.C. Retrieved from http://www.upme.gov. co/Docs/pndm/2013/PNDM2014.pdf Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Joseph, & Seal. (2014). The Rare-Earth Elements — Vital to Modern Technologies and Lifestyles. U.S. Geological Survey Fact Sheet 2014–3078. Reston, Virginia: U.S. Geological Survey Fact Sheet 2014–3078. http://doi.org/http://dx.doi.org/10.3133/ fs20143078 World Commission on Environment and Development. (1987). Report of the World Commission on Environment and Development: Our Common Future (The Brundtland Report). Medicine, Conflict and Survival. http://doi. org/10.1080/07488008808408783 Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 1–11. http://doi.org/10.1016/j. resourpol.2013.05.005 Ziemann, S., Grunwald, A., Schebek, L., Müller, D. b., & Weil, M. (2013). The future of mobility and its critical raw materials. Revue de Métallurgie, 110(1), 47–54. http://doi.org/10.1051/metal/2013052 Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: a screening study. The Science of the Total Environment, 461–462, 774–80. http://doi.org/10.1016/j.scitotenv.2013.05.040 Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/cenes/article/view/5426/6037
spellingShingle Industria minera - Aspectos económicos
Teoría económica
Recursos naturales no renovables - América Latina
Desarrollo económico - América Latina
Recursos minerales
Recursos naturales no renovables
Desarrollo económico
Innovación
Tecnologías sostenibles
Lara Rodríguez, Juan Sebastián
Tosi Furtado, André
Altimiras Martin, Aleix
Materias primas críticas y complejidad económica en América Latina
title Materias primas críticas y complejidad económica en América Latina
title_full Materias primas críticas y complejidad económica en América Latina
title_fullStr Materias primas críticas y complejidad económica en América Latina
title_full_unstemmed Materias primas críticas y complejidad económica en América Latina
title_short Materias primas críticas y complejidad económica en América Latina
title_sort materias primas criticas y complejidad economica en america latina
topic Industria minera - Aspectos económicos
Teoría económica
Recursos naturales no renovables - América Latina
Desarrollo económico - América Latina
Recursos minerales
Recursos naturales no renovables
Desarrollo económico
Innovación
Tecnologías sostenibles
url https://repositorio.uptc.edu.co/handle/001/2067
work_keys_str_mv AT lararodriguezjuansebastian materiasprimascriticasycomplejidadeconomicaenamericalatina
AT tosifurtadoandre materiasprimascriticasycomplejidadeconomicaenamericalatina
AT altimirasmartinaleix materiasprimascriticasycomplejidadeconomicaenamericalatina
AT lararodriguezjuansebastian criticalrawmaterialsandeconomiccomplexityinlatinamerica
AT tosifurtadoandre criticalrawmaterialsandeconomiccomplexityinlatinamerica
AT altimirasmartinaleix criticalrawmaterialsandeconomiccomplexityinlatinamerica
AT lararodriguezjuansebastian materiasprimascriticasecomplexidadeeconomicanaamericalatina
AT tosifurtadoandre materiasprimascriticasecomplexidadeeconomicanaamericalatina
AT altimirasmartinaleix materiasprimascriticasecomplexidadeeconomicanaamericalatina