Simulation of a biogas cleaning process using different amines

1 recurso en línea (páginas 51-60).

Bibliographic Details
Main Authors: Sepúlveda Cepeda, Guillermo Andrés, Jaimes Reatiga, Luis Eduardo, Pacheco Sandoval, Leonardo Esteban, Díaz González, Carlos Alirio
Format: Artículo de revista
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2018
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2165
_version_ 1801705860597022720
author Sepúlveda Cepeda, Guillermo Andrés
Jaimes Reatiga, Luis Eduardo
Pacheco Sandoval, Leonardo Esteban
Díaz González, Carlos Alirio
author_facet Sepúlveda Cepeda, Guillermo Andrés
Jaimes Reatiga, Luis Eduardo
Pacheco Sandoval, Leonardo Esteban
Díaz González, Carlos Alirio
author_sort Sepúlveda Cepeda, Guillermo Andrés
collection DSpace
description 1 recurso en línea (páginas 51-60).
format Artículo de revista
id repositorio.uptc.edu.co-001-2165
institution Repositorio Institucional UPTC
language eng
publishDate 2018
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-21652021-02-10T18:56:58Z Simulation of a biogas cleaning process using different amines Simulación de un proceso de purificación de biogas utilizando diferentes soluciones de aminas Simulação de um processo de purificação de biogás utilizando diferentes soluções de aminas Sepúlveda Cepeda, Guillermo Andrés Jaimes Reatiga, Luis Eduardo Pacheco Sandoval, Leonardo Esteban Díaz González, Carlos Alirio Biogás Refuse as fuel Amine. Deacidification. Biogas cleaning. Simulation. 1 recurso en línea (páginas 51-60). The use of biogas generated in landfills has gained importance in developing countries like Colombia. Taking into account that this biogas presents poor combustion properties that make interchangeability with other combustible gases difficult, the elimination of gases and vapors, such as CO2 and H2O, through a cleaning process, in which the biogas is converted to biomethane, improves the biogas properties as a fuel gas for general use. In this work, we simulated the generation of biogas at El Carrasco sanitary landfill in Bucaramanga, using the US EPA (United States Environmental Protection Agency) landfill gas emissions model. Additionally, we simulated the biogas cleaning process to extract the remaining moisture using the ProMax software; for this, we used three different amines (MDEA, MEA, and DEA), followed by a glycol dehydration process. The results showed that the amine MEA produced the largest increase in the concentration of CH4 (90.37 %) for the biogas generated in the landfill. Furthermore, dehydration with glycol was an efficient process to obtain a gas with a high percentage of methane (91.47 %) and low water presence (1.27 %); this would allow the use of biomethane in conventional industrial combustion processes and power generation. La utilización del biogás producido en vertederos de basura ha ganado importancia en países en vía de desarrollo, como Colombia. Teniendo en cuenta que este biogás tiene propiedades pobres de combustión que dificultan el intercambio con otros combustibles, la eliminación de gases y vapores, como el CO2 y el H2O, por medio de procesos de purificación en los que el biogás es convertido a biometano, mejora las propiedades del biogás como combustible para uso general. En este trabajo se simuló la producción de biogás en el vertedero de basura El Carrasco (Bucaramanga), usando el modelo de emisiones de gases en vertederos de la US EPA (United States Environmental Protection Agency). Adicionalmente, se simuló el proceso de purificación del biogás utilizando el software ProMax; el objetivo de este proceso es extraer la humedad del biogás, para lo cual se utilizaron tres aminas diferentes (MDEA, MEA y DEA) y un proceso posterior de deshidratación con glicol. Los resultados mostraron que la purificación con amina MEA logró producir el mayor incremento en la concentración de CH4 (90.37 %) en el biogás generado en el vertedero. Además, la deshidratación con glicol fue un proceso eficiente para obtener gas con un alto porcentaje de metano (91.47 %) y un bajo porcentaje de agua (1.27 %); estos resultados sugieren que el biometano se podría usar en procesos industriales convencionales y en generación de energía. A utilização do biogás produzido em depósitos de lixo tem ganhado importância em países em via de desenvolvimento, como a Colômbia. Tendo em conta que este biogás tem propriedades pobres de combustão que dificultam o intercâmbio com outros combustíveis, a eliminação de gases e vapores, como o CO2 e o H2O, por meio de processos de purificação nos quais o biogás é convertido a biometano, melhora as propriedades do biogás como combustível para uso geral. Neste trabalho simulou-se a produção de biogás no depósito de lixo El Carrasco (Bucaramanga), usando o modelo de emissões de gases em depósitos da US EPA (United States Environmental Protection Agency). Adicionalmente, simulou-se o processo de purificação do biogás utilizando o software ProMax; o objetivo deste processo é extrair a humidade do biogás, para o qual utilizaram-se três aminas diferentes (MDEA, MEA e DEA) e um processo posterior de desidratação com glicol. Os resultados mostraram que a purificação com amina MEA logrou produzir o maior incremento na concentração de CH4 (90.37 %) no biogás gerado no depósito. Além disso, a desidratação com glicol foi um processo eficiente para obter gás com uma alta porcentagem de metano (91.47 %) e uma baixa porcentagem de água (1.27 %); estes resultados sugerem que o biometano poderia ser usado em processos industriais convencionais e em geração de energia. Bibliografía y webgrafía: páginas 59-60. 2018-09-07T21:09:14Z 2018-09-07T21:09:14Z 2018-01-15 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Sepúlveda Cepeda, G. A. y otros. (2018). Simulation of a biogas cleaning process using different amines. Revista Facultad de Ingeniería, 27(47), 51-60. Simulation of a biogas cleaning process using different amines. 2357-5328 http://repositorio.uptc.edu.co/handle/001/2165 10.19053/01211129.v27.n47.2018.7751 eng G. Mundaca, “How much can CO2 emissions be reduced if fossil fuel subsidies are removed?,” Energy Economics, vol. 64, pp. 91-104, May. 2017. DOI: http://doi.org/10.1016/j.eneco.2017.03.014. International Energy Agency, CO2 Emissions from Fuel Combustion Highlights 2016. IEA Publications, 2016. Biogas Power (Off-grid) Programme. Available: http://mnre.gov.in/schemes/offgrid/biogas-2/. W. Ortiz, J. Terrapon-Pfaff, and C. Dienst, “Understanding the diffusion of domestic biogas technologies. Systematic conceptualization of existing evidence from developing and emerging countries,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1287-1299, Jul. 2017. DOI: http://doi.org/10.1016/j.rser.2016.11.090. I. Pérez, et al., “Technical, economic and environmental assessment of household biogas digesters for rural communities,” Renewable Energy, vol. 62, pp. 313-318, Feb. 2014. DOI: http://doi. org/10.1016/j.renene.2013.07.017. K. C. Surendra, D. Takara, A. G. Hashimoto, and S. K. Khanal, “Biogas as a sustainable energy source for developing countries: Opportunities and challenges,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 846-859, Mar. 2014. DOI: http://doi.org/10.1016/j.rser.2013.12.015. Q. Aguilar-Virgen, P. Taboada-González, and S. Ojeda-Benítez, “Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico,” J. Clean. Prod., vol. 79, pp. 53-60, Sep. 2014. DOI: http://doi.org/10.1016/j.jclepro.2014.05.025. W. Tsai, “Bioenergy from landfill gas (LFG) in Taiwan,” Renewable and Sustainable Energy Reviews, vol. 11(2), pp. 331-344, Feb. 2007. DOI: http://doi.org/10.1016/j.rser.2005.01.001. J. García, et al., “Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction,” Waste Manage, vol. 55, pp. 336-344, Sep. 2016. DOI: http://doi.org/10.1016/j.wasman.2016.06.003. Q. Aguilar-Virgen, et al., “Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 412- 419, Feb. 2014. DOI: http://doi.org/10.1016/j. rser.2013.10.014. R. Kadam, and N. L. Panwar, “Recent advancement in biogas enrichment and its applications,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 892- 903, Jun. 2017. DOI: http://doi.org/10.1016/j. rser.2017.01.167. C. Díaz González, A. Amell, and J. Suárez, “Comparison of combustion properties of simulated biogas and methane,” CT&F Ciencia, Tecnología y Futuro, vol. 3(5), pp. 225-236, 2009. C. E. Lee, C. B. Oh, I. S. Jung, and J. Park, “A study on the determination of burning velocities of LFG and LFG-mixed fuels,” Fuel, vol. 81(13), pp. 1679-1686, Aug. 2002. DOI: http://doi.org/10.1016/ S0016-2361(02)00049-2. Z. L. Wei, C. W. Leung, C. S. Cheung, and Z. H. Huang, “Effects of equivalence ratio, H2 and CO2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame,” Int. J. Hydrogen Energy, vol. 41(15), pp. 6567-6580, Apr. 2016. DOI: http:// doi.org/10.1016/j.ijhydene.2016.01.170. L. Pizzuti, C. A. Martins, and P. T. Lacava, “Laminar burning velocity and flammability limits in biogas: A literature review,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 856-865, Sep. 2016. DOI: http://doi.org/10.1016/j.rser.2016.05.011. C. Lee, and C. Hwang, “An experimental study on the flame stability of LFG and LFG-mixed fuels,” Fuel, vol. 86(5-6), pp. 649-655, Mar. 2007. DOI: http://doi.org/10.1016/j.fuel.2006.08.033. C. A. Díaz González, A. Amell Arrieta, and L. F. Cardona, “Estudio experimental de la estabilidad de llama de biogás en un sistema de premezcla,” Energética, 39, 2008. L. Pizzuti, et al., “Laminar burning velocity and flammability limits in biogas: A state of the art,” in 10th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, 2014. H. Nonaka, and F. M. Pereira, “Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas,” Fuel, vol. 182, pp. 382-390, Oct. 2016. DOI: http://doi.org/10.1016/j. fuel.2016.05.098. N. Hamidi, “Carbon dioxide effects on the flammability characteristics of biogas,” Applied Mechanics and Materials, vol. 493, pp. 129-133, Jan. 2014. DOI: http://doi.org/10.4028/www.scientific. net/AMM.493.129. K. Biernat, W. Gis, and I. Samson-Bręk, “Review of technology for cleaning biogas to natural gas quality,” Combustion Engines, vol. 148, pp. 33-39, 2012. M. J. Khalil, K. Sharma, and R. Gupta, “Strategic technologies for biogas purification,” in National Conference on Synergetic Trends in Engineering and Technology (STET-2014), 2014. B. Morero, and E. A. Campanella, “Simulación del Proceso de Absorción Química con Soluciones de Aminas para la Purificación Biogás,” Información Tecnológica, vol. 24(1), pp. 25-32, 2013. DOI: http:// doi.org/10.4067/S0718-07642013000100004. N. Abatzoglou, and S. Boivin, “A review of biogas purification processes,” Biofuels, Bioproducts and Biorefining, vol. 3(1), pp. 42-71, Jan. 2009. DOI: http://doi.org/10.1002/bbb.117. P. L. Fosbøl, et al., “Design and simulation of rate-based CO2 capture processes using carbonic anhydrase (CA) applied to biogas,” in 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), 2017. R. Ochieng et al., “Simulation of the Benfield HiPure process of natural gas sweetening for LNG production and evaluation of alternatives,” in Proceedings of Sour Oil and Gas Advanced Technology, 2012. V. N. Hernández, M. W. Hlavinka, and J. Bullin, “Design glycol units for maximum efficiency”, in Proceedings of the Annual Convention-Gas Processors Association, 1992. K. W. Mattsson-Bose, and L. G. Lyddon, “Using a process simulator to improve sulphur recovery,” Sulphur-London-, pp. 37-42, 1997. S. Rasi, Biogas Composition and Upgrading to Biomethane. Jyväskyla: University of Jyväskyla, 2009. A. Alexander, C. Burklin, and A. Singleton, “Landfill Gas Emissions Model (LandGEM) Version 3.02,” US Environmental Protection Agency, Eastern Research Group, 2005. H. Kamalan, M. Sabour, and N. Shariatmadari, “A review on available landfill gas models,” Journal of Environmental Science and Technology, vol. 4(2), pp. 79-92, Feb. 2011. DOI: http://doi.org/10.3923/ jest.2011.79.92. Alcaldía de Bucaramanga, Plan de Gestión Integral de Residuos Sólidos Pgirs. Bucaramanga: 2015. E. Erdmann, et al., “Endulzamiento de gas natural con aminas. Simulación del proceso y análisis de sensibilidad paramétrico,” Avances en Ciencias e Ingeniería, vol. 3(4), 2012. F. R. Abdeen, et al., “A review of chemical absorption of carbon dioxide for biogas upgrading,” Chin. J. Chem. Eng., vol. 24(6), pp. 693-702, Jun. 2016. DOI: http://doi.org/10.1016/j.cjche.2016.05.006. Revista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018) Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7751/6141
spellingShingle Biogás
Refuse as fuel
Amine.
Deacidification.
Biogas cleaning.
Simulation.
Sepúlveda Cepeda, Guillermo Andrés
Jaimes Reatiga, Luis Eduardo
Pacheco Sandoval, Leonardo Esteban
Díaz González, Carlos Alirio
Simulation of a biogas cleaning process using different amines
title Simulation of a biogas cleaning process using different amines
title_full Simulation of a biogas cleaning process using different amines
title_fullStr Simulation of a biogas cleaning process using different amines
title_full_unstemmed Simulation of a biogas cleaning process using different amines
title_short Simulation of a biogas cleaning process using different amines
title_sort simulation of a biogas cleaning process using different amines
topic Biogás
Refuse as fuel
Amine.
Deacidification.
Biogas cleaning.
Simulation.
url http://repositorio.uptc.edu.co/handle/001/2165
work_keys_str_mv AT sepulvedacepedaguillermoandres simulationofabiogascleaningprocessusingdifferentamines
AT jaimesreatigaluiseduardo simulationofabiogascleaningprocessusingdifferentamines
AT pachecosandovalleonardoesteban simulationofabiogascleaningprocessusingdifferentamines
AT diazgonzalezcarlosalirio simulationofabiogascleaningprocessusingdifferentamines
AT sepulvedacepedaguillermoandres simulaciondeunprocesodepurificaciondebiogasutilizandodiferentessolucionesdeaminas
AT jaimesreatigaluiseduardo simulaciondeunprocesodepurificaciondebiogasutilizandodiferentessolucionesdeaminas
AT pachecosandovalleonardoesteban simulaciondeunprocesodepurificaciondebiogasutilizandodiferentessolucionesdeaminas
AT diazgonzalezcarlosalirio simulaciondeunprocesodepurificaciondebiogasutilizandodiferentessolucionesdeaminas
AT sepulvedacepedaguillermoandres simulacaodeumprocessodepurificacaodebiogasutilizandodiferentessolucoesdeaminas
AT jaimesreatigaluiseduardo simulacaodeumprocessodepurificacaodebiogasutilizandodiferentessolucoesdeaminas
AT pachecosandovalleonardoesteban simulacaodeumprocessodepurificacaodebiogasutilizandodiferentessolucoesdeaminas
AT diazgonzalezcarlosalirio simulacaodeumprocessodepurificacaodebiogasutilizandodiferentessolucoesdeaminas