Audio effects on haptics perception during drilling simulation
1 recurso en línea (páginas 6-15).
Main Authors: | , , |
---|---|
Format: | Artículo de revista |
Language: | eng |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2019
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/2446 |
_version_ | 1801705882766016512 |
---|---|
author | Valbuena Vanegas, Yair Alexander Uribe Quevedo, Alvaro Velasco Vivas, Alexandra |
author_facet | Valbuena Vanegas, Yair Alexander Uribe Quevedo, Alvaro Velasco Vivas, Alexandra |
author_sort | Valbuena Vanegas, Yair Alexander |
collection | DSpace |
description | 1 recurso en línea (páginas 6-15). |
format | Artículo de revista |
id | repositorio.uptc.edu.co-001-2446 |
institution | Repositorio Institucional UPTC |
language | eng |
publishDate | 2019 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-24462021-02-10T19:05:37Z Audio effects on haptics perception during drilling simulation Efectos auditivos en la percepción háptica durante la simulación de perforación con taladro Valbuena Vanegas, Yair Alexander Uribe Quevedo, Alvaro Velasco Vivas, Alexandra Entornos virtuales compartidos Realidad virtual Simulación por computadores Fidelidad Háptica Simulación 1 recurso en línea (páginas 6-15). La realidad virtual ha proporcionado inmersión e interacción a través de entornos generados por computador que intentan reproducir experiencias de la vida real a través de estímulos sensoriales. El realismo puede lograrse a través de interacciones multimodales que pueden mejorar la inmersión y las interacciones si se diseñan adecuadamente. Los avances más notorios están relacionados con la computación gráfica, donde el foto-realismo es la tendencia actual. Asimismo, se tienen otros avances relacionados con el sonido, la háptica y en menor medida, el olfato y el gusto. En la actualidad, las características de los sistemas de realidad virtual (sonido visual-háptico) se están utilizando masivamente en entretenimiento (por ejemplo, cine, videojuegos, arte) y en otros escenarios (por ejemplo, inclusión social, educación, capacitación, terapia y turismo). Por otra parte, la reducción de costos de las tecnologías de realidad virtual ha dado lugar a la disponibilidad a nivel de consumo, de varios tipos de dispositivos hápticos. Dichos dispositivos ofrecen experiencias de baja fidelidad debido a las propiedades de los sensores, pantallas y otros dispositivos electromecánicos, que pueden no ser adecuados para experiencias de alta precisión o en situaciones reales que requieran destreza. Sin embargo, se han realizado investigaciones sobre cómo superar o compensar la falta de fidelidad para proporcionar una experiencia de usuario atractiva utilizando historias, interacciones multimodales y elementos de juego. Nuestro trabajo se centra en analizar los posibles efectos de la percepción auditiva sobre la retroalimentación háptica dentro de un escenario de perforación con taladro, que implica interacciones multimodales. Esta tarea tiene múltiples aplicaciones en medicina, elaboración y construcción. Comparamos dos escenarios en los que dos grupos de participantes tuvieron que perforar madera mientras escuchaban sonidos contextuales y no contextuales. Además, recopilamos su percepción utilizando una encuesta después de completar la tarea. A partir de los resultados, establecemos que el sonido influye en la percepción háptica, pero se requieren más experimentos para comprender mejor las implicaciones y posibles aplicaciones médicas. Virtual reality has provided immersion and interactions through computer generated environments attempting to reproduce real life experiences through sensorial stimuli. Realism can be achieved through multimodal interactions which can enhance the user’s presence within the computer generated world. The most notorious advances in virtual reality can be seen in computer graphics visuals, where photorealism is the norm thriving to overcome the uncanny valley. Other advances have followed related to sound, haptics, and in a lesser manner smell and taste feedback. Currently, virtual reality systems (multimodal immersion and interactions through visual-haptic-sound) are being massively used in entertainment (e.g., cinema, video games, art), and in non-entertainment scenarios (e.g., social inclusion, educational, training, therapy, and tourism). Moreover, the cost reduction of virtual reality technologies has resulted in the availability at a consumer-level of various haptic, headsets, and motion tracking devices. Current consumer-level devices offer low-fidelity experiences due to the properties of the sensors, displays, and other electro-mechanical devices, that may not be suitable for high-precision or realistic experiences requiring dexterity. However, research has been conducted on how to overcome or compensate the lack of high fidelity to provide an engaging user experience using storytelling, multimodal interactions and gaming elements. Our work focuses on analyzing the possible effects of auditory perception on haptic feedback within a drilling scenario. Drilling involves multimodal interactions and it is a task with multiple applications in medicine, crafting, and construction. We compare two drilling scenarios were two groups of participants had to drill through wood while listening to contextual and non-contextual audios. We gathered their perception using a survey after the task completion. From the results, we believe that sound does influence the haptic perception, but further experiments are required to better comprehend the implications and possible medical applications. Bibliografía y webgrafía: páginas 14-15. 2019-02-18T22:47:14Z 2019-02-18T22:47:14Z 2017-07-04 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Valbuena Vanegas, Y. A., Uribe Quevedo, A. & Velasco Vivas, A. (2017). Audio effects on haptics perception during drilling simulation. Revista Ingeniería, Investigación y Desarrollo, 17 (2), 6-15. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7179. http://repositorio.uptc.edu.co/handle/001/2446 2422-4324 http://repositorio.uptc.edu.co/handle/001/2446 10.19053/1900771X.v17.n2.2017.7179 eng R. Riener, M. Frey, T. Proll, F. Regenfelder and R. Burgkart, “Phantom-based multimodal interactions for medical education and training: the Munich knee joint simulator”, IEEE Transactions on Information Technology in Biomedicine, vol. 8, n.º 2, pp. 208-216, June 2004. doi: https://doi.org/10.1109/TITB.2004.828885 Aïm, Florence et al., “Effectiveness of Virtual Reality Training in Orthopaedic Surgery”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 32 n.º 1, pp. 224-232, January 2016. doi: https:// doi.org/10.1016/j.arthro.2015.07.023 M.A. Otaduy, Al. Okamura and S. Subramanian, “Haptic technologies for direct touch in virtual reality”, ACM SIGGRAPH 2016 Courses, vol. 24, p. 13, July 2016. doi: https://doi. org/10.1145/2897826.2927307 M. Azmandian et al., “Haptic Retargeting Video Showcase: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experience”, presented in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, vol. 3 n.º 3, May, 2016. doi: https:// doi.org/10.1145/2858036.2858226 J. M. Loomis, “Presence in Virtual Reality and Everyday Life: Immersion within a World of Representation”, Presence, vol. 25, n.º 2, pp. 169-174, Nov. 1 2016. doi: https://doi.org/10.1162/PRES_a_00255 M. Heilig, “Beginnings: sensorama and the telesphere mask”, in Digital illusion. Reading, MA: ACM Press/Addison-Wesley Publishing Co. pp. 343-351, January, 1998. R. L. Page, “Brief History of Flight Simulation”, presented in Proceedings of SimTecT 2000 Conference, Sydney, 2000, pp. 11-17. K. R. Rosen, “The history of medical simulation”, Journal of Critical Care, vol. 23 n.º 2, pp. 157- 166, June 2008. doi: https://doi.org/10.1016/j. jcrc.2007.12.004. I. E. Sutherland. (1965). The ultimate display. Multimedia: From Wagner to virtual reality, [En línea], proccedings of the IFIP Congress, [Online] Available at: https://www.wired.com/2009/09/augmented- reality-the-ultimate-display-by-ivan-sutherland- 1965/ V. R. Algazi, R.O. Duda and D.M. Thompson, “Motion- tracked binaural sound”, Journal of the Audio Engineering Society, vol. 52 n.º 11, 2004, pp. 1142- 1156 SR. Lyu, Y.K. Lin, ST. Huang et al., BioMed Eng OnLine, vol. 12, pp. 63, 2013, doi: https://doi. org/10.1186/1475-925X-12-63 Abdulmotaleb El Saddik, et al., “Haptics: General Principles”, in Haptics Technologies, Part of the series Springer Series on Touch and Haptic Systems, pp 1-20, August 2011. T. R. Coles, D. Meglan and N. W. John, “The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art,” IEEE Transactions on Haptics, vol. 4, n.º 1, pp. 51-66, January-March 2011. doi: https://doi.org/10.1109/TOH.2010.19. F. Avanzini and D. Rocchesso, “Controlling material properties in physical models of sounding objects”, presented in Proc. Int. Computer Music Conf., La Habana, pp. 91-94, 2001. M. Strese, C. Schuwerk, A. Iepure and E. Steinbach, “Multimodal Feature-based Surface Material Classification,” IEEE Transactions on Haptics, n.º 99, p. 1. doi: https://doi.org/10.1109/TOH.2016.2625787 T. Ming-Dar, H. Ming-Shium and T. Chiung-Hsin, “Bone drilling haptic interaction for orthopedic surgical simulator”, Computers in Biology and Medicine, v. 37 n.º 12, December 2007, pp. 1709-1718. doi: https://doi.org/10.1016/i.compbiomed. 2007.04.006 A. Petersik, B. Pflesser, U. Tiede, K-H Höhne and R. Leuwer, “Realistic haptic interaction in volume sculpting for surgery simulation”, presented in Proceedings of the 2003 international conference on Surgery simulation and soft tissue modeling (IS4TM’03), Nicholas Ayache and Hervé Delingette (Eds.). Berlin, Heidelberg, Germany: Springer-Verlag, 194-202, 2003. L. Panait, E. Akkary, R.L. Bell, K.E. Roberts, S.J. Dudrick and A.J. Duffy, “The role of haptic feedback in laparoscopic simulation training”, Journal of Surgical Research, vol. 156 n.º 2, pp. 312-316, 2009. doi: https://doi.org/10.1016/i.iss.2009.04.018 J. N. W. and R. J. Stone, “Mastoidectomy simulation with combined visual and haptic feedback” Medicine Meets Virtual Reality 02/10: Digital Upgrades, Applying Moore’s Law to Health, vol. 85 n.º 17, 2002. The Columbia Electronic Encyclopedia. (s.f.). [Online] Available at: http://encyclopedia2.thefreedictionary. com/Perception M. Lerner et al., “Does training on a virtual reality robotic simulator improve performance on the da Vinci® surgical system?”, Journal of Endourology, vol. 24 n.º 3, pp. 467-472, 2010. B. Zendejas, A. T. Wang, R. Brydges, J. Stanley, D. Hamstra and A. Cook, “Cost: The missing outcome in simulation-based medical education research: A systematic review”, Surgery, vol. 153, n.º 2, February 2013, pp. 160-176. doi: https://doi. org/10.1016/j.surg.2012.06.025 T. Geb et al., “The design and testing of a force feedback dental simulator”, Computer methods and programs in biomedicine, vol. 64 n.º 1, pp. 53-64, 2001. doi: https://doi.org/10.1016/S0169- 2607(00)00089-4 B. Tse et al. “Design and development of a haptic dental training system-haptel”, presented in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 101- 108, July 2010. doi: https://doi.org/10.1007/978- 3-642-14075-4_15 P. A. Heng et al., «A virtual-reality training system for knee arthroscopic surgery,» IEEE Transactions on Information Technology in Biomedicine, vol. 8, n.º 2, pp. 217-227, June 2004. doi: 10.1109/ TITB.2004.826720 A. M. Okamura, C. Simone and M. D. O’Leary, “Force modeling for needle insertion into soft tissue,” IEEE Transactions on Biomedical Engineering, vol. 51, n.º 10, pp. 1707-1716, Oct. 2004. Doi: https://doi.org/10.1109/TBME.2004.831542 N.J. Maran and RJ Glavin, “Low‐to high‐fidelity simulation– a continuum of medical education?” Medical Education, vol. 37, n.º 1, pp. 22-28, 2003. doi: https://doi.org/10.1046/i.1365-2923.37.s1.9.x N. Geoff, K. Dore and L. Grierson, “The minimal relationship between simulation fidelity and transfer of learning”, Medical Education, vol. 46 n.º 7, pp. 636-647, 2012. doi: https://doi.org/10.1111/ j.1365-2923.2012.04243.x S. Wiriyacosol and E.J. Armarego, “Thrust and torque prediction in drilling from a cutting mechanics approach”, CIRP Annales, vol. 87 n.º 91, 1979. R.H. Todd, K.A. Dell, K. Allen and L. Alting, “Manufacturing processes reference guide”, USA: Industrial Press Inc, 1994. B. Ravikiran, Singapogu and T. C. Burg, “Haptic virtual manipulatives for enhancing K-12 special education”, presented in Proceedings of the 47th Annual Southeast Regional Conference (ACMSE 47), ACM, New York, 2009. DOI: https://doi. org/10.1145/1566445.1566547 A. V. Shah, S. Teuscher, E.W. McClain and J.J. Abbott, “How to build an inexpensive 5-dof haptic device using two novint falcons”, presented in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Berlin Heidelberg, Germany: Springer, pp. 136-143, July 2010. doi:https://doi.org/10.1007/978-3-642- 14064-8_21 S. Martin and N. Hillier, “Characterization of the Novint Falcon haptic device for application as a robot manipulator”, presented in Australasian Conference on Robotics and Automation (ACRA), pp. 291-292, December 2009. A. Uribe-Quevedo, D. Rojas and B. Kapralos, “Customization of a low-end haptic device to add rotational DOF for virtual cardiac auscultation training,” presented in 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), Chalkidiki, 2016, pp. 1-6. DOI: https://doi.org/10.1109/IISA.2016.7785431 F. Conti, D. Morris, F. Barbagli and C. Sewell. (2006). CHAI 3D. [Online]. Retrieved from http://www. chai3d.org G.C. Urbaniak and S. Plous. (2013). Research Randomizer (Version 4.0) [Computer Software]. Retrieved from http://www.randomizer.org/ M. Melaisi, M. Nguyen, A., Uribe-Quevedo and B. Kapralos, “The Effect of Sound on Haptic Fidelity Perception”, in EDUCON 2017. To appear Revista Ingeniería, Investigación y Desarrollo;Volumen 17, número 2 (Julio-Diciembre 2017) Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/7179/5608 |
spellingShingle | Entornos virtuales compartidos Realidad virtual Simulación por computadores Fidelidad Háptica Simulación Valbuena Vanegas, Yair Alexander Uribe Quevedo, Alvaro Velasco Vivas, Alexandra Audio effects on haptics perception during drilling simulation |
title | Audio effects on haptics perception during drilling simulation |
title_full | Audio effects on haptics perception during drilling simulation |
title_fullStr | Audio effects on haptics perception during drilling simulation |
title_full_unstemmed | Audio effects on haptics perception during drilling simulation |
title_short | Audio effects on haptics perception during drilling simulation |
title_sort | audio effects on haptics perception during drilling simulation |
topic | Entornos virtuales compartidos Realidad virtual Simulación por computadores Fidelidad Háptica Simulación |
url | http://repositorio.uptc.edu.co/handle/001/2446 |
work_keys_str_mv | AT valbuenavanegasyairalexander audioeffectsonhapticsperceptionduringdrillingsimulation AT uribequevedoalvaro audioeffectsonhapticsperceptionduringdrillingsimulation AT velascovivasalexandra audioeffectsonhapticsperceptionduringdrillingsimulation AT valbuenavanegasyairalexander efectosauditivosenlapercepcionhapticadurantelasimulaciondeperforacioncontaladro AT uribequevedoalvaro efectosauditivosenlapercepcionhapticadurantelasimulaciondeperforacioncontaladro AT velascovivasalexandra efectosauditivosenlapercepcionhapticadurantelasimulaciondeperforacioncontaladro |