Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas

1 recurso en línea (64 páginas ) : ilustraciones color, figuras, gráficos, tablas.

Bibliographic Details
Main Author: Morantes Luis, Dana Zuliet
Other Authors: Muñoz Prieto, Efren de Jesús
Format: Trabajo de grado - Maestría
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2019
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2498
_version_ 1801705881673400321
author Morantes Luis, Dana Zuliet
author2 Muñoz Prieto, Efren de Jesús
author_facet Muñoz Prieto, Efren de Jesús
Morantes Luis, Dana Zuliet
author_sort Morantes Luis, Dana Zuliet
collection DSpace
description 1 recurso en línea (64 páginas ) : ilustraciones color, figuras, gráficos, tablas.
format Trabajo de grado - Maestría
id repositorio.uptc.edu.co-001-2498
institution Repositorio Institucional UPTC
language spa
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-24982023-03-29T20:23:34Z Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas Morantes Luis, Dana Zuliet Muñoz Prieto, Efren de Jesús Celulosa Nanocristales de celulosa Celulosa - Química Análisis termogravimétrica Analisis térmico Termogravimetría Floculación Purificación de aguas residuales - Floculación Maestría en Química - Tesis y disertaciones académicas 1 recurso en línea (64 páginas ) : ilustraciones color, figuras, gráficos, tablas. Cellulose is the most abundant biopolymer on earth. The different cellulosic materials have been replaced by polymers derived from petroleum, offering a natural and sustainable alternative. Among them, the cellulose nanocrystals (CNC), which allow to explore a wide spectrum of applications such as water treatment. In this work, CNC was modified with the reagent of Girard's T (2-hydrazinyl-2-oxoethyltrimethylammonium chloride) and CHPTAC (3-chloro-2-hydroxypropyltrimethylammonium chloride) as cationic grafts. The synthesized materials were characterized chemically and structurally with Z potential, degree of substitution with elemental analysis, infrared spectroscopy with Fourier transform (FTIR), X-ray diffraction (XRD), hydrodynamic size with dynamic light scattering (DLS) and microscopy of atomic force (AFM). Additionally, thermal properties were studied with thermogravimetry (TGA) and differential scanning calorimetry (DSC). The flocculant capacity of CNC-EPTMAC on suspensions of silica (SiO2) at 0.25% w / w was evaluated and the optimum dose was determined. This work tests the flocculation capacity of CNC-EPTMAC in water in terms of elimination of turbidity and decrease of physicochemical parameters in surface water. La celulosa es el biopolímero más abundante de la tierra. Los diferentes materiales celulósicos han sustituido a los polímeros derivados del petróleo, ofreciendo una alternativa natural y sostenible. Entre ellos, los nanocristales de celulosa (CNC), cuya superficie a través de la modificación química permite explorar un amplio espectro de aplicaciones como el tratamiento de aguas. En este trabajo, se modificó CNC con el reactivo de Girard’s T (cloruro de 2-hidrazinil-2-oxoetiltrimetilamonio) y CHPTAC (cloruro de 3-cloro-2-hidroxipropiltrimetilamonio) como injertos catiónicos. Los materiales sintetizados se caracterizaron química y estructuralmente por potencial Z, grado de sustitución por análisis elemental, espectroscopia infrarroja con transformada de Fourier (FTIR), difracción de rayos X (XRD), tamaño hidrodinámico por dispersión dinámica de luz (DLS) y Microscopia de fuerza atómica (AFM). Adicionalmente se realizó el estudio de las propiedades térmicas por termogravimetría (TGA) y calorimetría diferencial de barrido (DSC). Se evaluó la capacidad floculante de CNC-EPTMAC sobre suspensiones de silica (SiO2) a 0,25 % p/p y se determinó la dosis óptima. Este trabajo prueba la capacidad de floculación de CNC-EPTMAC en agua en términos de eliminación de turbidez y disminución de parámetros fisicoquímicos en aguas superficiales. Bibliografía y webgrafía: páginas 61-64. Maestría Magíster en Química 2019-03-28T14:16:01Z 2019-03-28T14:16:01Z 2017 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Morantes Luis, D. L. (2017). Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2498 http://repositorio.uptc.edu.co/handle/001/2498 spa T. Abitbol et al., “ScienceDirect Nanocellulose , a tiny fiber with huge applications,” Curr. Opin. Biotechnol., vol. 39, no. I, pp. 76–88, 2016. S. Bel, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement : A comparative study,” Carbohydr. Polym., vol. 143, pp. 310–317, 2016 S. Bel, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydr. Polym., vol. 92, no. 2, pp. 1625–1632, 2013. B. Ranby and E. Ribi, “The microstructure of cellulose,” Experientia, 1950. D. Klemm et al., “Cellulose Nanocrystals : Chemistry , Self-Assembly , and Applications,” Angew. Chemie - Int. Ed., vol. 50, no. 24, pp. 5438–5466, 2009. T. Abitbol, E. Kloser, and D. G. Gray, “Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis,” pp. 785–794, 2013 C. W. Alfred et al., “NRC Publications Archive Characteristics and Properties of Carboxylated Cellulose Nanocrystals Characteristics and Properties of Carboxylated Cellulose Nanocrystals Prepared from a Novel One-Step Procedure,” 2011 Y. Habibi, H. Chanzy, and M. R. Vignon, “TEMPO-mediated surface oxidation of cellulose whiskers,” pp. 679–687, 2006. E. Lam, K. B. Male, J. H. Chong, A. C. W. Leung, and J. H. T. Luong, “Applications of functionalized and nanoparticle-modified nanocrystalline cellulose,” Trends Biotechnol., vol. 30, no. 5, pp. 283–290, 2012. J. Tang, J. Sisler, N. Grishkewich, and K. C. Tam, “Functionalization of cellulose nanocrystals for advanced applications,” J. Colloid Interface Sci., 2017. I. Kalashnikova, B. Cathala, and I. Capron, “New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals,” pp. 7471–7479, 2011. F. Cherhal, F. Cousin, and I. Capron, “Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals,” 2015. A. M. M. Kaushik, “Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis,” Green Chem, vol. 18, pp. 622–637, 2016. N. Grishkewich, N. Mohammed, J. Tang, and K. C. Tam, “Recent Advances in the Application of Cellulose Nanocrystals,” COCIS, 2017. M. S. Reid, M. Villalobos, and E. D. Cranston, “The Role of Hydrogen Bonding in Non-Ionic Polymer Adsorption to Cellulose Nanocrystals and Silica Colloids,” COCIS, 2017. T. Suopajärvi, H. Liimatainen, O. Hormi, and J. Niinimäki, “Coagulation – flocculation treatment of municipal wastewater based on anionized nanocelluloses,” vol. 231, pp. 59–67, 2013. R. Batmaz, N. Mohammed, R. M. Berry, and K. C. Tam, “Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes,” pp. 1655–1665, 2014 M. K. Oksman, “Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water,” Carbohydr. Polym., 2014. D. En and C. Qu, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos,” tesis Dr., 2015. B. G. Smith, P. J. Harris, L. D. Melton, and R. H. Newman, “Crystalline Cellulose in Hydrated Primary Cell Walls of Three Monocotyledons and One Dicotyledon,” vol. 39, no. 7, pp. 711–720, 1998. J. Kim et al., “Review of Nanocellulose for Sustainable Future Materials,” vol. 2, no. 2, pp. 197–213, 2015. R. J. Moon, A. Martini, J. Nairn, J. Youngblood, A. Martini, and J. Nairn, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev, 2011 M. Ahmed, S. Azizi, F. Alloin, and A. Dufresne, “Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field,” pp. 612–626, 2005. K. Fleming, D. G. Gray, and S. Matthews, “Cellulose Crystallites,” pp. 1831–1835, 2001. Y. Song, Y. Sun, X. Zhang, J. Zhou, and L. Zhang, “Homogeneous Quaternization of Cellulose in NaOH / Urea Aqueous Solutions as Gene Carriers,” pp. 2259–2264, 2008. M. Visanko, H. Liimatainen, J. P. Heiskanen, and O. Hormi, “Amphiphilic Cellulose Nanocrystals from Acid-Free Oxidative Treatment: Physicochemical Characteristics and Use as an Oil − Water Stabilizer,” 2014. H. Yang and T. G. M. Van De Ven, “Preparation of hairy cationic nanocrystalline cellulose,” Cellulose, vol. 23, no. 3, pp. 1791–1801, 2016. C. e H. (N and T. G. M. Van De Ven, “Preparation of hairy cationic nanocrystalline cellulose,” Cellulose, vol. 23, no. 3, pp. 1791–1801, 2016. Z. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I. Kim, “Cationic-cellulose nanofibers : Preparation and dyeability with anionic reactive dyes for apparel application,” Carbohydr. Polym., vol. 91, no. 1, pp. 434–443, 2013. The Hebrew University of Jerusalem, “EA - Elemental Analysis of C, H, N, S and O.,” 2009. [Online]. Available: http://departments.agri.huji.ac.il/zabam/EA.html. [Accessed: 01-Jan-2009]. Malvern, “Zetasizer,” Zestasizer nano user Man., vol. MAN0485 Is, no. 230, 2013. C. Poole and F. Owens, “Introducción a la nanotecnología,” 2007. G. BARROOW, “QUIMICA FISICA PARA LAS CIENCIAS DE LA VIDA/GORDO N M. BARROW.,” sidalc.net. F. J. Poole, C. P., & Owens, Introducción a la nanotecnología. 2007. T. H. U. C. F. N. A. NANOTECHNOLOGY, “Scanning Probe Microscope - Dimension 3100, Nanoscope V,” 2014. . S. Ruiz, I. Alonso, and D. Quintanilla, “Analisis Instrumental,” 2009. I. G. Fernández, “Aplicación de materiales nanoestructurados metal-orgánicos (MOFs) en procesos de adsorción y catálisis heterogénea,” 2015. M. I. T. Aguilar, “ratamiento físico-químico de aguas residuales: coagulación-floculación.No Title,” EDITUM, 2002. S. Mishra, A. Mukul, G. Sen, and U. Jha, “International Journal of Biological Macromolecules Microwave assisted synthesis of polyacrylamide grafted starch ( St-g-PAM ) and its applicability as flocculant for water treatment,” Int. J. Biol. Macromol., vol. 48, no. 1, pp. 106–111, 2011. Z. Yang et al., “Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water q,” vol. 244, pp. 209–217, 2014. X. Hao, Q. Chang, L. Duan, and Y. Zhang, “Synergetically Acting new Flocculants on the Basis of Starch-graft-Poly ( acrylamide ) -co-Sodium,” vol. 59, pp. 251–257, 2007. M. de medio ambiente y desarrollo Sostenible, Resolución 0631. 2015. T. G. M. Van De Ven and A. Sheikhi, “Hairy cellulose nanocrystalloids: a novel class of nanocellulose,” Nanoscale, vol. 8, no. 33, pp. 15101–15114, 2016. B. Sun, Q. Hou, Z. Liu, and Y. Ni, “Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive,” Cellulose, 2015. R. Prathapan, R. Thapa, G. Garnier, and R. F. Tabor, “Colloids and Surfaces A : Physicochemical and Engineering Aspects Modulating the zeta potential of cellulose nanocrystals using salts and surfactants,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 509, pp. 11–18, 2016. J. Sirviö, A. Honka, H. Liimatainen, J. Niinimäki, and O. Hormi, “Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent,” vol. 86, pp. 266–270, 2011. P. Lu and Y. Hsieh, “Preparation and properties of cellulose nanocrystals : Rods , spheres , and network,” Carbohydr. Polym., vol. 82, no. 2, pp. 329–336, 2010. H. Yang, D. Chen, and T. G. M. Van De Ven, “Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers,” Cellulose, pp. 1743–1752, 2015. Y. Nishiyama, J. Sugiyama, and H. Chanzy, “Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction,” Chem. Soc., 2003. P. Weimer and J. Hackney, “Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation,” Biotechnol., 1995. M. Zaman, H. Xiao, F. Chibante, and Y. Ni, “Synthesis and characterization of cationically modified nanocrystalline cellulose,” Carbohydr. Polym., vol. 89, no. 1, pp. 163–170, 2012. C. R. RODRÍGUEZ and PONTIFICIA, “EVALUACIÓN DE CUATRO DESINFECTANTES SOBRE Listeria monocytogenes AISLADA DE PRODUCTOS CÁRNICOS CRUDOS DE UNA PLANTA DE PROCESADOS EN BOGOTÁ CAROLINA,” Pontif. Univ. JAVERIANA, pp. 29–30, 2007. A. Kaboorani and B. Riedl, “Surface modification of cellulose nanocrystals ( CNC ) by a cationic surfactant,” Ind. Crop. Prod., vol. 65, pp. 45–55, 2015. M. Hasani, E. D. Cranston, and D. G. Gray, “Cationic surface functionalization of cellulose nanocrystals,” pp. 2238–2244, 2008. P. Dhar, D. Tarafder, A. Kumar, and V. Katiyar, “RSC Advances mechanical , barrier and thermal properties of,” RSC Adv., vol. 5, pp. 60426–60440, 2015. S. Huan, L. Bai, G. Liu, W. Cheng, and G. Han, “RSC Advances polystyrene and cellulose nanocrystals : manufacture and characterization †,” RSC Adv., vol. 5, pp. 50756–50766, 2015 G. Li, Y. Fu, Z. Shao, and F. Zhang, “Preparing Cationic Cellulose Derivative in NaOH / Urea Aqueous Solution and its Performance as Filler Modifier,” vol. 10, no. 4, pp. 7782–7794, 2015. M. Grunert and W. T. Winter, “Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals,” vol. 10, no. April, pp. 27–30, 2002. S. Pal, D. Mal, and R. P. Singh, “Cationic starch : an effective flocculating agent,” vol. 59, pp. 417–423, 2005. M. D. L. P. SOCIAL and V. Y. D. T. MINISTERIO DE AMBIENTE, “Resolución 2115,” 2007. D. Callister, W. & rethwisch, “Fundamentals of materials science ang engineering an integrated approach,” WILEY, vol. 4th editio, 2012. Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad de Ciencias. Escuela de Posgrados. Maestría en Química
spellingShingle Celulosa
Nanocristales de celulosa
Celulosa - Química
Análisis termogravimétrica
Analisis térmico
Termogravimetría
Floculación
Purificación de aguas residuales - Floculación
Maestría en Química - Tesis y disertaciones académicas
Morantes Luis, Dana Zuliet
Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title_full Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title_fullStr Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title_full_unstemmed Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title_short Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
title_sort modificaciones cationicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas
topic Celulosa
Nanocristales de celulosa
Celulosa - Química
Análisis termogravimétrica
Analisis térmico
Termogravimetría
Floculación
Purificación de aguas residuales - Floculación
Maestría en Química - Tesis y disertaciones académicas
url http://repositorio.uptc.edu.co/handle/001/2498
work_keys_str_mv AT morantesluisdanazuliet modificacionescationicasdenanocristalesdecelulosaaplicadascomofloculantesaltratamientodeaguas