Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña

1 recurso en línea (71 páginas) : ilustraciones color, figuras, tablas.

Bibliographic Details
Main Author: Muñoz Castiblanco, Deysi Tatiana
Other Authors: Martínez Zambrano, José Jobanny
Format: Trabajo de grado - Maestría
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2019
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2499
_version_ 1801705859510697984
author Muñoz Castiblanco, Deysi Tatiana
author2 Martínez Zambrano, José Jobanny
author_facet Martínez Zambrano, José Jobanny
Muñoz Castiblanco, Deysi Tatiana
author_sort Muñoz Castiblanco, Deysi Tatiana
collection DSpace
description 1 recurso en línea (71 páginas) : ilustraciones color, figuras, tablas.
format Trabajo de grado - Maestría
id repositorio.uptc.edu.co-001-2499
institution Repositorio Institucional UPTC
language spa
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-24992023-03-28T14:39:20Z Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña Muñoz Castiblanco, Deysi Tatiana Martínez Zambrano, José Jobanny Rojas Sarmiento, Hugo Alfonso COLCIENCIAS Industria biotecnológica Microbiología industrial Control de procesos biotecnológicos Energía biomásica Maestría en Química - Tesis y disertaciones académicas 1 recurso en línea (71 páginas) : ilustraciones color, figuras, tablas. 5-Hydroxymethyl-2-furancarboxylic acid (HMFCA) is important as a monomer in the synthesis of various polyesters and has possible antitumor activity. It is obtained by the selective oxidation of the formyl group from 5-hydroxymethylfurfural (5-HMF). However, obtaining HMFCA by conventional chemical methods has several disadvantages, such as the large amount of sodium hydroxide used and high temperatures, which, at an industrial level, represents a significant amount of pollutants and high production costs. In addition, the use of solid catalysts with high value metals makes the HMFCA synthesis process expensive. In response to this problem, biotechnological methods of synthesis that are less polluting and economically sustainable have been used, such as fermentations, with which it is possible to obtain products with high added value, such as HMFCA, when the conditions for the growth of microorganisms are optimized. In the present investigation, starting from cane bagasse residues, a bacterial strain capable of degrading 5-HMF and selectively converting it into HMFCA was isolated. According to the sequencing of the 16S ribosomal gene, the bacterial strain belongs to the species Serratia marcescens. The oxidation of 5-HMF to HMFCA was carried out in fermentations with whole cells. The follow-up of the 5-HMF transformation reaction was performed by high-resolution liquid chromatography (HPLC) and bacterial growth was determined by UV-Vis spectrophotometry. Two sources of 5-HMF were used, one corresponding to pure 5-HMF (5-HMFp) and the other more economical, obtained from fructose hydrolysates (5-HMFf)., using Nb2O5 as a catalyst. The tolerance level of Serratia marcescens was determined at different concentrations of 5-HMFp and 5-HMFf. It was demonstrated that the bacteria was able to metabolize a concentration of 5-HMFf of 10 mM, at 30 ° C and pH 8, obtaining a yield towards HMFCA of 78% in 12 hours of reaction. Subsequently, the reaction conditions were evaluated: temperature, pH and substrate concentration, in the yield to HMFCA from 5-HMFf with the use of the Box-Behnken design. The results showed yields above 60 % for HMFCA at 30 °C, pH 8, and a concentration of 5-HMF equal to 3 mM. Through the polymerase chain reaction (PCR), the presence of the family pyridine nucleotide disulfide oxidoreductases in S. marcescens was confirmed as a possible gene responsible for the transformation of 5-HMF to HMFCA. Also, the Fed-batch strategy with control of 5-HMFf concentration was used to obtain a higher concentration of the compound of interest in the culture medium, reaching a final HMFCA concentration of 790 mg L-1, using the most economical source of 5-HMF, without genetically modified microorganisms, and in 20 hours of reaction. El ácido 5-hidroximetil-2-furancarboxílico (HMFCA) es importante como monómero en la síntesis de diversos poliésteres y tiene posible actividad antitumoral. Se obtiene por la oxidación selectiva del grupo formilo del 5-hidroximetilfurfural (5-HMF). Sin embargo, la obtención de HMFCA por métodos químicos convencionales presenta varias desventajas, como la gran cantidad de hidróxido de sodio usado y las altas temperaturas, lo cual, a nivel industrial, representa una importante cantidad de contaminantes y altos costos en su producción. Además, la utilización de catalizadores sólidos con metales de alto valor, hace que el proceso de síntesis de HMFCA sea costoso. Como respuesta a esta problemática, se han utilizado métodos biotecnológicos de síntesis menos contaminantes y económicamente sustentables como las fermentaciones, con las cuales es posible obtener productos de alto valor agregado, como el HMFCA, cuando se optimizan las condiciones para el crecimiento de los microorganismos. En la presente investigación, partiendo de residuos de bagazo de caña se aisló una cepa bacteriana capaz de degradar 5-HMF y convertirlo selectivamente en HMFCA. De acuerdo con la secuenciación del gen ribosomal 16S, la cepa bacteriana pertenece a la especie Serratia marcescens. La oxidación de 5-HMF a HMFCA se llevó a cabo en fermentaciones con las células completas. El seguimiento de la transformación de 5-HMF se realizó por cromatografía de líquidos de alta resolución (HPLC) y el crecimiento bacteriano fue determinado por espectrofotometría UV-Vis. Se utilizaron dos fuentes de 5-HMF, una correspondiente a 5-HMF puro (5-HMFp) y la otra más económica, obtenida a partir de hidrolizados de fructosa, utilizando Nb2O5 como catalizador (5-HMFf). Se determinó el nivel de tolerancia de Serratia marcescens a diferentes concentraciones de 5-HMFp y 5-HMFf. Se demostró que la bacteria fue capaz de metabolizar una concentración de 5-HMFf de 10 mM, a 30 °C y pH 8, obteniéndose un rendimiento hacia HMFCA del 78 % en 12 horas de reacción. Posteriormente, se evaluaron las condiciones de reacción: temperatura, pH y concentración de sustrato, en el rendimiento de HMFCA a partir de 5-HMFf con el uso del diseño Box-Behnken. Los resultados mostraron rendimientos por encima del 60% para HMFCA a 30 °C, pH 8, y una concentración de 5-HMF igual a 3 mM. Mediante la reacción en cadena de la polimerasa (PCR), se confirmó la presencia de la familia piridina nucleótido disulfuro oxidorreductasas en S. marcescens, como posible gen responsable de la transformación de 5-HMF a HMFCA. Asimismo, se usó la estrategia Fed-batch con control de la concentración de 5-HMFf, para obtener una mayor concentración del compuesto de interés en el medio de cultivo, llegando a obtener una concentración final de HMFCA de 790 mg L-1, usando la fuente más económica de 5-HMF, sin microorganismos modificados genéticamente, y en 20 horas de reacción. Bibliografía: páginas 67-71. Maestría Magíster en Química 2019-03-28T14:50:19Z 2019-03-28T14:50:19Z 2018 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Muñoz Castiblanco, D. T. (2018). Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2499 http://repositorio.uptc.edu.co/handle/001/2499 spa M. Almeida, J., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., & Gorwa-Grauslund, “Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae,” J. Chem. Technol. Biotechnol., vol. 82, no. 4, pp. 340–349, 2007. S. Subbiah, S. P. Simeonov, J. M. S. S. Esperança, L. P. N. Rebelo, and C. A. M. Afonso, “Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction,” Green Chem., vol. 15, no. 10, p. 2849, 2013. Y.-Z. Qin, Y.-M. Li, M.-H. Zong, H. Wu, and N. Li, “Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents,” Green Chem., vol. 17, no. 7, pp. 3718–3722, 2015. F. Wang and Z. Zhang, “Cs-substituted tungstophosphate-supported ruthenium nanoparticles: An effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid,” J. Taiwan Inst. Chem. Eng., vol. 70, pp. 1–6, 2017. M. Munekata and G. Tamura, “Antitumor Activity of 5-Hidroxy-methyl-2-furoic Acid,” Agric. Biol. Chem., vol. 45, no. 9, pp. 40–41, 1981. Y. M. Li, X. Y. Zhang, N. Li, P. Xu, W. Y. Lou, and M. H. Zong, “Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells,” ChemSusChem, vol. 10, no. 2, p. 304, 2017. F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid,” Bioresour. Technol., vol. 101, no. 16, pp. 6291–6296, 2010. R. Trifonova, J. Postma, F. W. A. Verstappen, H. J. Bouwmeester, J. J. M. H. Ketelaars, and J. D. Van Elsas, “Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms,” FEMS Microbiol. Ecol., vol. 66, no. 1, pp. 158–166, 2008. M. J. López, J. Moreno, N. N. Nichols, B. S. Dien, and R. J. Bothast, “Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates,” Appl. Microbiol. Biotechnol., vol. 64, no. 1, pp. 125–131, 2004. J. Zhang, Z. Zhu, X. Wang, N. Wang, W. Wang, and J. Bao, “Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation,” Biotechnol. Biofuels, vol. 3, no. 1, p. 26, 2010 G. S. Hossain et al., “Metabolic engineering of Raoultella ornithinolytica BF60 for production of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural,” Appl. Environ. Microbiol., vol. 83, no. 1, 2017. E. Capuano and V. Fogliano, “Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies,” LWT - Food Sci. Technol., vol. 44, no. 4, pp. 793–810, 2011. N. Wierckx, F. Koopman, H. J. Ruijssenaars, and J. H. De Winde, “Microbial degradation of furanic compounds: Biochemistry, genetics, and impact,” Appl. Microbiol. Biotechnol., vol. 92, no. 6, pp. 1095–1105, 2011. D. Macías Granados, “Catabolismo de furfurales y compuestos aromáticos en ‘Pseudomonas pseudoalcaligenes’ CECT 5344. Aislamiento de nuevas cepas asimiladoras de cianuro y sus complejos metálicos,” Universidad de Extremadura, 2014. P. W. Trudgill, “The metabolism of 2-furoic acid by Pseudomanas F2,” Biochem J, vol. 113, no. 4, pp. 577–587, 1969. K. Koenig and J. R. Andreesen, “Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: Two molybdenum-containing dehydrogenases of novel structural composition,” J. Bacteriol., vol. 172, no. 10, pp. 5999–6009, 1990. F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14.,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 11, pp. 4919–4924, 2010. J. M. R. Gallo, D. M. Alonso, M. A. Mellmer, and J. A. Dumesic, “Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents,” Green Chem., vol. 15, no. 1, pp. 85–90, 2013. I. A. Vanegas, “Síntesis y reactividad de 5-hidroximetilfurfural (HMF).,” Universidad Nacional Autónoma de México., 2014. C. C. Vanegas Salazar, “Manejo Del Bagazo En La Agroindustria De La Caña Panelera En El Nordeste Antioqueño a Partir De La Gestión Integral De Residuos: Estudio De Caso Municipio De Yolombo.,” Universidad de Manizales, 2016. M. Ventura, M. Aresta, and A. Dibenedetto, “Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water,” ChemSusChem, vol. 9, no. 10, pp. 1096–1100, 2016. O. Casanova, S. Iborra, and A. Corma, “Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts,” J. Catal., vol. 275, no. 2, pp. 236–242, 2010. R. Rinaldi, R. Palkovits, and F. Schuth, “Depolymerization of cellulose using solid catalysts in ionic liquids,” Angew. Chemie, Int. Ed., vol. 47, no. 42, pp. 8047–8050, 2008. E. F. Dunn, D. Liu, and E. Y. X. Chen, “Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids,” Appl. Catal. A Gen., vol. 460–461, pp. 1–7, 2013. A. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chem. Rev., vol. 107, no. 6, pp. 2411–2502, 2007. G. Rothenberg, Catalysis : Concepts and Green Applications. 2015. S. P. Teong, G. Yi, and Y. Zhang, “Hydroxymethylfurfural production from bioresources: past, present and future,” Green Chem., vol. 16, no. 4, p. 2015, 2014. C. Idler, J. Venus, and B. Kamm, Microorganisms In Biorefineries. 2015. W. P. Dijkman, D. E. Groothuis, and M. W. Fraaije, “Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid,” Angew. Chemie - Int. Ed., vol. 53, no. 25, pp. 6515–6518, 2014. W. P. Dijkman and M. W. Fraaije, “Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688,” Appl. Environ. Microbiol., vol. 80, no. 3, pp. 1082–1090, 2014. M. A. Lee J, Lee S, Park S, “Research review paper Control of fed-batch fermentations,” Biotechnol. Adv., p. pp: 29-48, 1999. M. L. Shuler and F. Kargi, Bioprocess Engineering: Basic Concepts, Second Edition. Prentice hall, 2002. E. Hernández, “Cultivo continuo de microorganismos,” Rev. la Fac. Agron., vol. 2, pp. 95–112, 1974. Z. Sun, J. A. Ramsay, M. Guay, and B. A. Ramsay, “Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440,” Appl. Microbiol. Biotechnol., vol. 82, no. 4, pp. 657–662, 2009. S. Y. Lee, “High cell-density culture of Escherichia coli,” Trends Biotechnol., vol. 14, no. 3, pp. 98–105, 1996. Y. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H. Christensen, and A. Riisager, “Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature,” ChemSusChem, vol. 2, no. 7, pp. 672–675, 2009. E. S. Kang, D. W. Chae, B. Kim, and Y. G. Kim, “Efficient preparation of DHMF and HMFA from biomass-derived hmf via a cannizzaro reaction in ionic liquids,” J. Ind. Eng. Chem., vol. 18, no. 1, pp. 174–177, 2012. P. Verdeguer, N. Merat, and A. Gaset, “Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique,” J. Mol. Catal., vol. 85, no. 3, pp. 327–344, 1993. A. Lolli et al., “Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles,” Appl. Catal. A Gen., vol. 504, pp. 408–419, 2015. S. E. Davis, L. R. Houk, E. C. Tamargo, A. K. Datye, and R. J. Davis, “Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts,” Catal. Today, vol. 160, no. 1, pp. 55–60, 2011. Z. Miao et al., “Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution,” Catal. Sci. Technol., vol. 5, no. 2, pp. 1314–1322, 2015. T. Pasini et al., “Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles,” Green Chem., vol. 13, no. 8, pp. 2091–2099, 2011. Z. Zhang, B. Liu, K. Lv, J. Sun, and K. Deng, “Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex,” Green Chem., vol. 16, no. 5, p. 2762, 2014. N. K. Gupta et al., “Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure,” Green Chem., vol. 13, no. 4, p. 824, 2011. K. Mitsukura, Y. Sato, T. Yoshida, and T. Nagasawa, “Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains,” Biotechnol. Lett., vol. 26, no. 21, pp. 1643–1648, 2004 X.-Y. Zhang, M.-H. Zong, and N. Li, “Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid,” Green Chem., vol. 19, no. 19, pp. 4544–4551, 2017. M. van Deurzen, F. van Rantwijk, and R. Sheldon, “Chloroperoxidase-Catalyzed Oxidation of 5-Hydroxymethylfurfural.,” J. Carbohydr. Chem., no. July 2013, pp. 37–41, 2006. M. J. Taherzadeh, L. Gustafsson, C. Niklasson, and G. Lidén, “Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae,” Appl. Microbiol. Biotechnol., vol. 53, no. 6, pp. 701–708, 2000. N. Terasawa, A. Sugiyama, M. Murata, and S. Homma, “Isolation of a microorganism to oxidize 5-hydroxymethylfurfural,” Food Sci. Technol. Res., vol. 8, no. 1, pp. 28–31, 2002. H. Ran, J. Zhang, Q. Gao, Z. Lin, and J. Bao, “Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1,” Biotechnol. Biofuels, vol. 7, no. 1, p. 51, 2014. C. F. Yang and C. R. Huang, “Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate,” Bioresour. Technol., vol. 214, pp. 311–318, 2016. N. Wierckx, F. Koopman, L. Bandounas, J. H. De Winde, and H. J. Ruijssenaars, “Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt,” Microb. Biotechnol., vol. 3, no. 3, pp. 336–343, May 2010. A. C. Moreno, “Identificación molecular de una especie de Serratia aislada de mussa paradisiaca,” Universidad Veracruzana, 2010. M. T. Rokade and A. S. Pethe, “Isolation , Identification and Optimization Study of Prodigiosin from Serratia marcesces,” Biosci. Discov., vol. 8, no. 3, pp. 388–396, 2017. J. J. Martínez et al., “Dehydration of Glucose to 5-Hydroxymethylfurfural Using LaOCl/Nb2O5 Catalysts in Hot Compressed Water Conditions,” Catal. Letters, vol. 147, no. 7, pp. 1765–1774, 2017. N. Aslan and Y. Cebeci, “Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals,” Fuel, vol. 86, no. 1–2, pp. 90–97, 2007. J. Harvill, “MINITAB statistical software, release 7.2 SUN-4 version,” Chemom. Intell. Lab. Syst., vol. 18, no. 1, pp. 111–112, 1993. “Primer3,” 2012. [Online]. Available: http://bioinfo.ut.ee/primer3-0.4.0/. P. Y. Nikolov and V. A. Yaylayan, “Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde (HMF) and its further transformations in the presence of glycine,” J. Agric. Food Chem., vol. 59, no. 18, pp. 10104–10113, 2011. N. M. Elkenawy, A. S. Yassin, H. N. Elhifnawy, and M. A. Amin, “Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation,” Biotechnol. Reports, vol. 14, pp. 47–53, 2017. W. T. Su, T. Y. Tsou, and H. L. Liu, “Response surface optimization of microbial prodigiosin production from Serratia marcescens,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 2, pp. 217–222, 2011. S. O. Dozie-Nwachukwu, Y. Danyuo, J. D. Obayemi, O. S. Odusanya, K. Malatesta, and W. O. Soboyejo, “Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery,” Mater. Sci. Eng. C, vol. 71, pp. 268–278, 2017. C. Z. Zang et al., “Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1133–1139, 2014. I. N. Ryazantseva, V. S. Saakov, I. N. Andreyeva, T. I. Ogorodnikova, and Y. F. Zuev, “Response of pigmented Serratia marcescens to the illumination,” J. Photochem. Photobiol. B Biol., vol. 106, no. 1, pp. 18–23, 2012. A. Narang and S. S. Pilyugin, “Bacterial gene regulation in diauxic and non-diauxic growth,” J. Theor. Biol., vol. 244, no. 2, pp. 326–348, 2007. F. Martínez Montes and H. Pardo Vázquez, Juan Pablo Riveros Rosas, Bioquímica de Laguna y Piña, Octava Edi. Ciudad de México: Editorial El Manual Moderno, S.A. de C.V., 2018. E. Palmqvist and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition,” Bioresour. Technol., vol. 74, no. 1, pp. 25–33, 2000. G. Sakir Hossain et al., “Metabolic engineering of Raoultella ornithinolytica BF60 for the production of 2, 5- furandicarboxylic acid from 5-hydroxymethylfurfural Running Title: 2, 5-furandicarboxylic acid production,” Appl. Environ. Microbiol., 2016. A. Khanafari, M. M. Assadi, and F. A. Fakhr, “Review of Prodigiosin , Pigmentation in Serratia marcescens,” J. Biol. Sci., vol. 6, no. 1, pp. 1–13, 2006. H. W. C. De Araújo, K. Fukushima, and G. M. C. Takaki, “Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate,” Molecules, vol. 15, no. 10, pp. 6931–6940, 2010. S. L. C. Ferreira et al., “Box-Behnken design: An alternative for the optimization of analytical methods,” Anal. Chim. Acta, vol. 597, no. 2, pp. 179–186, 2007. C. Chang, P. Cen, and X. Ma, “Levulinic acid production from wheat straw,” Bioresour. Technol., vol. 98, no. 7, pp. 1448–1453, 2007. Y. Kwak, A. R. Khan, and J. H. Shin, “Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode,” J. Biotechnol., vol. 193, pp. 1–2, 2015. P. Li et al., “Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential,” PLoS One, vol. 10, no. 4, pp. 1–22, 2015. A. Iguchi et al., “Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen,” Genome Biol. Evol., vol. 6, no. 8, pp. 2096–2110, 2014. S. S. Pao, I. an T. Paulsen, and M. H. Saier, “Major Facilitator Superfamily,” Microbiol. Mol. Biol. Rev., vol. 62, no. 1, pp. 1–34, 1998. C. M. Grant, F. H. Maciver, and I. W. Dawes, “Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae,” Curr. Genet., vol. 29, pp. 511–515, 1996. C. Wang, S. R. Wesener, H. Zhang, and Y. Q. Cheng, “An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide,” Chem. Biol., vol. 16, no. 6, pp. 585–593, 2009. C. H. Williams, “Mechanism from and structure of thioredoxin reductase Escherichia coli,” FASEB J., vol. 9, pp. 1267–1276, 1995. A. G. Sánchez Fuentes and R. Arredondo Peter, “La dihidrolipoamida deshidrogenasa: estructura, función y patología,” Rev. Educ. Bioquímica, vol. 36, no. 3, pp. 82–88, 2017. D. Kim and J. S. Hahn, “Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-Hydroxymethylfurfural, which function as Thiol-Reactive electrophiles generating oxidative stress,” Appl. Environ. Microbiol., vol. 79, no. 16, pp. 5069–5077, 2013. M. Deponte, “Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes,” Biochim. Biophys. Acta - Gen. Subj., vol. 1830, no. 5, pp. 3217–3266, 2013. B. Favaloro, S. Melino, R. Petruzzelli, C. Di Ilio, and D. Rotilio, “Purification and characterization of a novel glutathione transferase from Ochrobactrum anthropi,” FEMS Microbiol. Lett., vol. 160, no. 1, pp. 81–86, 1998. J. R. Mahan and J. J. Burke, “Purification and characterization of glutathione reductase from corn Mesophyll chloroplasts,” Physiol. Plant., vol. 71, no. 3, pp. 352–358, 1987. Y. Wang, H. Han, B. Cui, Y. Hou, Y. Wang, and Q. Wang, “A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme,” Bioengineered, vol. 8, no. 6, pp. 742–749, 2017. R. Jaenicke, H. D. Lüdemann, and G. Schmid, “Pressure, Temperature and pH Dependence of the Absorption Spectrum of Reduced Nicotinamide Adenine Dinucleotide,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 36, no. 1–2, pp. 84–86, 1981. T. Dalgleish et al., Dehydrogenases Requiring Nicotinamide Coenzymes, vol. 136, no. 1. 2007. M. Ask, V. Mapelli, H. Höck, L. Olsson, and M. Bettiga, “Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials,” Microb. Cell Fact., vol. 12, no. 1, pp. 1–10, 2013. C. F. Yang and C. R. Huang, “Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate,” J. Biosci. Bioeng., vol. 125, no. 4, pp. 407–412, 2018. Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad de Ciencias, Escuela de Posgrados. Maestría en Química
spellingShingle Industria biotecnológica
Microbiología industrial
Control de procesos biotecnológicos
Energía biomásica
Maestría en Química - Tesis y disertaciones académicas
Muñoz Castiblanco, Deysi Tatiana
Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title_full Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title_fullStr Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title_full_unstemmed Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title_short Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña
title_sort obtencion de acido 5 hidroximetil 2 furancarboxilico hmfca a partir de 5 hidroximetilfurfural 5 hmf con microorganismos aislados de bagazo de cana
topic Industria biotecnológica
Microbiología industrial
Control de procesos biotecnológicos
Energía biomásica
Maestría en Química - Tesis y disertaciones académicas
url http://repositorio.uptc.edu.co/handle/001/2499
work_keys_str_mv AT munozcastiblancodeysitatiana obtenciondeacido5hidroximetil2furancarboxilicohmfcaapartirde5hidroximetilfurfural5hmfconmicroorganismosaisladosdebagazodecana