Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4
1 recurso en línea (89 páginas) : ilustraciones color, figuras, tablas, imágenes.
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Maestría |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2019
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/2582 |
_version_ | 1801705884242411520 |
---|---|
author | García Colmenares, José Mauricio |
author2 | Reyes Cuellar, Julia Constanza |
author_facet | Reyes Cuellar, Julia Constanza García Colmenares, José Mauricio |
author_sort | García Colmenares, José Mauricio |
collection | DSpace |
description | 1 recurso en línea (89 páginas) : ilustraciones color, figuras, tablas, imágenes. |
format | Trabajo de grado - Maestría |
id | repositorio.uptc.edu.co-001-2582 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2019 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-25822023-04-10T21:04:13Z Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 García Colmenares, José Mauricio Reyes Cuellar, Julia Constanza Enzimas inmovilizadas Biorreactores Enzimas Enzimas Inmovilizadas - Biotecnología Maestría en Química - Tesis y disertaciones académicas 1 recurso en línea (89 páginas) : ilustraciones color, figuras, tablas, imágenes. A nivel industrial, el uso de enzimas inmovilizadas simplifica el proceso y disminuye el costo económico de la producción. Se investigó el reusó de la enzima β-glucosidasa inmovilizada sobre nanopartículas magnéticas de ferrita de cobalto CoFe2O4 activadas con glutaraldehído, para aplicarla en la hidrólisis de extractos de solasonina, provenientes de frutos semimaduros de la especie Solanum marginatum. El trabajo se dividió en cinco capítulos. En el capítulo I, se aborda el soporte teórico del trabajo de investigación. En el capítulo II, se presenta la síntesis y caracterización de las nanopartículas magnéticas de ferrita de cobalto (CoFe2O4). Se sintetizaron tres relaciones molares de nanopartículas. Se evaluó el rendimiento de síntesis y la atracción magnética, obteniendo mejores resultados con la relación Co40Fe60. Con estas nanopartículas, en el capítulo II, se realizó el proceso de inmovilización usando como modelo la enzima bromelina. La inmovilización se efectuó covalentemente mediante puentes de glutaraldehído y nanopartículas recubiertas con quitosano. Los resultados de este capítulo se condensan en un artículo titulado: Cinética de bromelina inmovilizada sobre nanopartículas magnéticas de cobalto-hierro (CoFe2O4), enviado a la revista South African Journal of Science, el cual se encuentra en evaluación. En el capítulo III, se realizó la aplicación del sistema de inmovilización y caracterización de la enzima β-glucosidasa sobre nanopartículas magnéticas de CoFe2O4 activadas con glutaraldehído. Se evaluaron cuatro tipos de inmovilización. La β-glucosidasa tipo A presentó la mayor eficiencia de inmovilización con 84,6 ± 2,1%. La actividad catalítica de la enzima libre e inmovilizada fue determinada en 93 ±2,6 y 82 ± 2,8% respectivamente. La inmovilización tipo D presentó el porcentaje de inmovilización más bajos con 25 ±2,4%. El sistema fue optimizado bajo las siguientes condiciones: 200 mg de NPM, glutaraldehído 1M, β-glucosidasa 5,7E-5M, tiempo de inmovilización 16 horas a 60 °C. La β-glucosidasa inmovilizada puede ser reutilizada durante diez ciclos manteniendo el 52 ± 2,5% de su actividad. La caracterización de las nanopartículas CoFe2O4 (Co40Fe60) y de la β-glucosidasa se evaluó por: microscopía electrónica de transmisión (TEM-STEM), difracción de rayos X (DRX) espectroscopias FT-IR y UV-vis, voltametría cíclica (VC), voltametría de onda cuadrada (VOC) y magnetometría de muestra vibrante (VSM). En el capítulo IV, se presenta la aplicación de la β-glucosidasa inmovilizada, en la hidrólisis de solasonina para obtención de solasodina a partir de frutos semimaduros de Solanum marginatum, logrando obtener un rendimiento de 1,8-2,5% y pureza de 89,2-91,3 %. Siendo mayor cando se realiza la extracción vía hidrólisis ácida. Sin embargo, esta diferencia es superada por la β-glucosidasa inmovilizada al lograr ser reutilizada durante diez ciclos y es amigable con el entorno natural. Como aporte, se realizó la caracterización por técnicas voltamperométricas aún no reportadas en la literatura, de las NPM-CoFe2O4 y de la β-glucosidasa inmovilizada. Se modificó el proceso de extracción de solasonina, fundamentado en la formación de sales de acetato de solasodina, haciéndolo amigable con el medio ambiente. Industrial use of immobilized enzyme simplifies the process and improves the economics and process efficiencies. The reuse of immobilized β-glucosidase enzyme on glutaraldehyde-activated cobalt ferrite magnetic nanoparticles was investigated for the hydrolysis of solasonin extracts from semi-mature fruits of Solanum marginatum. The work was divided into five chapters. In Chapter I, the theoretical support of the research work is addressed. In Chapter II, the synthesis and characterization of the cobalt ferrite magnetic nanoparticles (CoFe2O4) is presented. Three molar ratios of nanoparticles were synthesized. The performance of synthesis and magnetic attraction were evaluated, obtaining better results with the relation Co40Fe60. With these nanoparticles, in chapter II, the immobilization process was performed using the enzyme bromelain as a model. The immobilization was performed covalently by glutaraldehyde bridges and chitosan-coat. The results of this chapter are condensed in an article titled: Kinetics of immobilized bromelain on magnetic nanoparticles of cobalt-iron (CoFe2O4), sent to the South African Journal of Science, which is being evaluated. In Chapter III, the immobilization and characterization of β-glucosidase enzyme was applied to glutaraldehyde activated CoFe2O4 magnetic nanoparticles. Four types of immobilization were evaluated. Type A β-glucosidase presented the highest immobilization efficiency with 84.6 ± 2.1%. The catalytic activity of the free and immobilized enzyme was determined in 93 ± 2.6 and 82 ± 2.8% respectively. Type D immobilization showed the lowest immobilization percentage with 25 ± 2.4%. The system was optimized under the following conditions: 200 mg of MNP, 1M glutaraldehyde, 5E-5M β-glucosidase, immobilization time 16 hours at 60 ° C. Immobilized β-glucosidase can be reused for ten cycles while maintaining 52 ± 2.5% of its activity.The characterization of the nanoparticles CoFe2O4 (Co40Fe60) and β-glucosidase was evaluated by: transmission electron microscopy (TEM-STEM), X-ray diffraction (XRD) FT-IR and UV-vis spectroscopies, cyclic voltammetry (CV) , square wave voltammetry (SWV) and vibration sample magnetometry (VSM). In Chapter IV, the application of the immobilized β-glucosidase, in the hydrolysis of solasonin to obtain solasodine from semi-mature fruits of Solanum marginatum, is presented, obtaining a yield of 1.8-2.5% and purity of 89.2-91.3%. Being greater when the extraction is carried out via acid hydrolysis. However, this difference is overcome by the immobilized β-glucosidase to be reused for ten cycles and is friendly to the natural environment. As a contribution, characterization was performed by voltamperometric techniques not yet reported in the literature, of NPM-CoFe2O4 and immobilized β-glucosidase. The extraction process of solasonin, based on the formation of salts of acetate of solasodine, was modified, making it friendly with the environment. Bibliografía: páginas 83-87. Maestría Magíster en Química 2019-05-10T21:24:54Z 2019-05-10T21:24:54Z 2017 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 García Colmenares, J. M. (2017). Extracción de Solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2582 http://repositorio.uptc.edu.co/handle/001/2582 spa Zappino, M., Cacciotti, I., Benucci, I., Nanni, F., Liburdi, K., “Bromelain immobilization on microbial and animal source chitosan films, plasticized with glycerol, for application in wine-like medium: Microstructural, mechanical and catalytic characterisations,” Food Hydrocoll., vol. 45, pp. 41–47, 2015. L. M. Granados Castellanos, “Caracterización de la cadena de valor para la extracción de hecogenina a partir de jugo de fique en el departamento de Boyacá,” Universidad Javeriana, Bogota, 2010. J. D. Mann, “Production of Solasodine for the Pharmaceutical Industry,” Adv. Agron., vol. 30, no. C, pp. 207–245, 1979. Y. Alvarez Q, R.M., Villa V, José A., Martinez M, Alejandro., y Fujimoto, “Obtención de 16-dehidroprogesterona a partir de solasodina de frutos maduros de Solanum mammosum,” Rev. Vitae, vol. 7, p. 11, 2000. A. Sanabria Galindo, “Alcaloides del Solanum marginatum. Extracción de solasodina y contenido de la misma en tres estados de madurez de los frutos,” Rev. Colomb. ceiencias Químico-Farmacéuticas, p. 7, 1980. K. Schreiber, “The Alkaloids Chemistry and Physiology,” vol. 10. 1968. H. Ripperger, “Steroid alkaloid glycosides from Solanum robustum,” Phytochemistry, vol. 39, no. 6, pp. 1475–1477, 1995. M. Indrayanto, G., Syahrani, A., Sondakh, R., & Santosa, Solasodine. En Analytical profiles of drug substances and excipients,. New Jersey, 1996. J. E. Perez-Medina, L. A., Travecedo, E., and Devia, “Glycoalkaloids in Columbian Solanaceae,” Planta Med., vol. 4, pp. 478–487, 1964. M. A. Martínez, “Saponinas esteroides.,” Rev. Univ. Antioquia., p. Recuperado en octubre 6, 2015, de http://farmacia., 2001. L. Rodriguez Mayor, “Hidrolisis de celobiosa con b-glucosidasa inmovilizada,” Tesis Dr. en ciencias químicas, p. 276, 1991. P. Zheng, J. Wang, C. Lu, Y. Xu, and Z. Sun, “Immobilized of b-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose,” Process Biochem., vol. 48, no. 4, pp. 683–687, 2013. V. Madan L, R. Chaudhary, T. Tsuzuki, C. J. Barrow, and M. Puri, “Immobilization of b-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis,” Bioresour. Technol., vol. 135, pp. 2–6, 2013. S. W. Jung, Y.R., Shin, H.Y., Song, Y.S., Kim, S.B., Kim, “Enhancement of immobilized enzyme activity by pretreatment of b-glucosidase with cellobiose and glucose.,” J. Ind. Eng. Chem., vol. 18, p. 702–706., 2011 H. J. Cho, E.J., Jung, S., Kim, H.J., Lee, Y.G., Nam, K.C., Lee, H.J., Bae, “Coimmobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose.,” Chem. Commun., vol. 48 (6), p. 886–888., 2012. R. L. Juang, R.S., Wu, F.C., & Tseng, “Use of chemically modified chitosan beads for soportion and enzyme immobilization.,” Adv. Environ., vol. 6, pp. 171–177, 2002. A. J. Johnson, A.K., Zawadzka, A.M., Deobald, L.A., Crawford, R.L., & Paszczynski, “Novel metthod for immobilization of enzymes to magnetic nanoparticles.,” J Nanopart Res., vol. 10, pp. 1009–1025, 2008. A. Konwarh, R., Karak, N., Rai, S.K., & Mukherjee, “Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase.,” Nanotechnology, vol. 20, p. 225–235., 2009. J. L. Bruno, L.M., Coelho, J.S., Melo, E.H.M., & Lima-Filho, “Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles.,” World J Microb Biotechnol, vol. 21, p. 189–192., 2005. J. M. Gomez-Hens, A., Fernandez-Romero, “Analytical methods for the control of liposomal delivery systems.,” Trends Anal Chem, vol. 25:, p. 167–178., 2006. Jeong, S., Shin, S., Lee and J. Kim, “Magnetic properties of superparamagnetic γ-Fe2O3 nanoparticles prepared by coprecipitation technique,” J Magn Magn Mater, vol. 286, pp. 5–9, 2005. R. I. Mrzljak, “On-line monitoring of cobalt in zinc plant electrolyte by diferential pulse adsortive stripping voltammetry,” Anlal. Chem, vol. 281, pp. 281–290, 1993. J. Urbanska, J., Biernal, “Polarographic determination of cobalt (II) in prescence of nickel (II),” Chem Anal, vol. 30, pp. 33–37, 1985. H. Chiriac, A. E. Moga, and G. C, “Preparation and characterization of Co, Fe y Co-Fe magnetic nanoparticles,” Optoelectron. Adv. Mater., vol. 10, no. 12, pp. 3492–3496, 2008. A. Bobrowski, “Polarographic methods for ultra-trace cobalt determination based on adsortive-catalytic effects in cobalt (II)-dioxime-nitrite systems,” Anlal. Chem, vol. 61, pp. 2178–2184, 1989. T. Schmidt, “Polarographic cobalt determination in the prescence of high zinc concentrations.,” Anlal. Chem, vol. 330, pp. 712–713, 1988. R. eiss, P. and Forrer, “Mean Magnetic Moments in bcc Fe–Co Alloys,” Ann. Phys., vol. 10, pp. 12–279, 1929. X. Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., Zeng, “Novel and efficient method for immobilization and stabilization of b-Dgalactosidase by covalent attachment onto magnetic Fe3O4echitosan nanoparticles.,” J Mol Catal B Enzym, vol. 61, no. (3e4), p. 208–215., 2009. H. Ma, Z., Guan., Y., Liu, “Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups.,” J Polym Sci Part A Polym Chem, vol. 43, no. 15, p. 3433–3339., 2005. R. V. I. M. Flores Gonzalez, M.A. Montiel, H. Gonzalez, “Primeras evidencias de la obtención de materiales nanométricos Fe-Co sintetizados mediante el método poliol,” Supl. la Rev. Latinoam. Metal. y Mater., vol. 1, no. 3, pp. 913–917, 2009. K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati, “Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment,” J. Hazard. Mater., vol. 333, pp. 308–318, 2017. D. G. M. Margabandhu, S. Sendhilnathan, S. Senthilkumar, “Investigation of structural, morphological, magnetic properties and biomedical applications of Cu2+ substituted uncoated cobalt ferrite nanoparticles,” Braz. Arch. Biol. Technol., vol. 59, pp. 1–10, 2016. X. Guo, H. Li, and S. Zhao, “Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst,” J. Taiwan Inst. Chem. Eng., vol. 55, pp. 90–100, 2015. C. D. Lokhande, S. S. Kulkarni, R. S. Mane, and S. H. Han, “Copper ferrite thin films: Single-step non-aqueous growth and properties,” J. Cryst. Growth, vol. 303, no. 2, pp. 387–390, 2007. A. López, S.A., Alatorre and F. C. Gutierrez, S., Ponce, C., and Walsh, “Electrochemical study of Co(II)/Co (III) on different electrode materials for energy storage in redox flow cells,” Electrochem. Soc. Trans., vol. 20, pp. 237–247, 2009. P. . Jegannathan, K.R.; Nielsen, “Environmental assessment of enzyme use in industrial production-a literature review.,” J. Clean. Prod., vol. 42, pp. 228–240, 2013. A. Care, A. Petroll, K. Gibson, E.S.Y. Bergquist, P. L. and Sunna, “Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides.,” Biotechnol. Biofuels, vol. 10, pp. 1–16, 2017. S. Sheldon, R.A. van Pelt, “Enzyme immobilisation in biocatalysis: why, what and how.,” Chem Soc Rev., vol. 7;42, p. 6223–6235., 2013. M. Ahmad, R. Sardar, “Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix.,” Biochem Anal Biochem., vol. 4, pp. 178–185, 2015. X. Hartmann, M. Kostrov, “Immobilization of enzymes on porous silicas-benefits and challenges.,” Chem. Soc. Rev., vol. 42, pp. 6277–6289, 2013. M. M. C. Cipolatti, E.P. Silva, M.J. Klein, M. Feddern, V. Feltes, “Current status and trends in enzymatic nanoimmobilization.,” J. Mol. Catal B Enzym., vol. 99, pp. 56–67, 2014. Q. Akhtar, S., Khan, A.A., & Husain, “Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorizatio and removal of textil dyes from polluted wastewater and dyeing effluente.,” Chemosphere, vol. 60, pp. 291–301, 2005. Y. Issa, B. Obaidat, I.M. Albiss, B.A. and Haik, “Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Sciences.,” Int. J. Mol., vol. 14(11), pp. 21266–21305, 2013. T. R. Kolhatkar, A.G. Jamison, A.C. Litvinov, D. Willson, R.C. And Lee, “Tuning the Magnetic Properties of Nanoparticles.,” Int. J. Mol. Sci., vol. 14(8), pp. 15977–16009, 2013. X. Z. Chenliang Pan, Bing Hu, Wei Li, Yi Sun, Hong Ye, “Novel and efficient method for immobilization and stabilization of β galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles.,” J Mol Catal B Enzym, vol. 61, pp. 208–215, 2009. J. H. T. L. Khaled A. Mahmoud, Keith B. Male, Sabahudin Hrapovic, “Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization.,” Appl Mater Inter, vol. 1, pp. 1383–6, 2009. J. W. Wenlei Xie, “Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil,” Biomass and Bioenergy, vol. 36, pp. 373–380, 2012. D. Clavijo, M. Portilla, M. Cecilia., and A. Quijano Parra, “Cinética de la bromelina obtenida a partir de la piña perolera ( Ananas Comosus ) de Lebrija-Santander Kinetics of bromelain obtained from the pineapple ( Ananas comosus ) from,” Rev. la Fac. Ciencias Básicas, vol. 10, no. 2, pp. 41–49, 2012. B. Blijenberg, BG., Roetering, HA., Zwang, L.., and Leijnse, “Spinal fluid protein revisited: a reappraisal of the biuret procedure.,” J . Clin. Chem. Biochem, vol. 23, pp. 225–30, 1985. Y. H. Jimin Du, Zhimin Liu, Weize Wu, Zhonghao Li, Buxing Han, “Preparation of single-crystal copper ferrite nanorods and nanodisks.,” Mater. Res., vol. 40, pp. 928– 9, 2005. X. C. Yu-long Tan, Chen-guang Liu, Le-jun Yu, “Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles,” Front. Mater. Sci., vol. 2, no. 2, pp. 209–213, 2008. et al. S. Yodoya, T., Takagi, M., Kurotani, T., Hayashi, M., Furuta, M., Oka, “Immobilization of bromelain onto porous copoly(γ-methyl-l-glutamate/l-leucine) beads,” Eur. Polym. Journal., vol. 9, no. 1, pp. 173–180, 2003. A. M. V. Benucci, I., Esti, M., Liburdi, K., Garzillo, “Pineapple stem bromelain immobilized on different supports: catalytic properties in model wine,” Biotechnol. Progress., vol. 28, no. 6, pp. 1472–1477, 2012. Y. Zhang, G. A. Shi, and F. Zhao, “Hydrolysis of casein catalyzed by papain in n-propanol/NaCl two-phase system,” Enzyme Microb. Technol., vol. 46, no. 6, pp. 438–443, 2010. N. A. Yazid, R. A. Barrena, and A. Sánchez, “The immobilisation of proteases produced by SSF onto functionalized magnetic nanoparticles: Application in the hydrolysis of different protein sources,” "Journal Mol. Catal. B, Enzym., pp. 1–13, 2017. B. Etske et al., “Chymosin-induced hydrolysis of caseins: Influence of degree of phosphorylation of alpha-s1-casein and genetic variants of beta-casein,” Int. Dairy J., vol. 39, no. 2, pp. 215–221, 2014. C. Dong Hwang and H. Shih Hung, “Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles,” Process Biochem., vol. 39, no. 12, pp. 2207–2211, 2004. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem, vol. 72, pp. 248–254, 1976. T. Takahashi, M., Konishi, Y., “Biochemical characterization of Magnaporthe oryzae b-glucosidases for efficient b-glucan hydrolysis.,” Appl. Microbiol. Biotechnol., vol. 91, p. 1073–1082., 2011. C. Tigting, Yang, Wenjuan., G. Yuling, Y. Renjun, and Y. Li, Xu and Yan, “Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles,” Enzyme Microb. Technol., vol. 63, pp. 50–57, 2014. A. C. Jansen, E.F., Tomimatsu, Y. y Olson, “Cross-linking of a chymotrypsin and other proteins by reaction with glutaraldehyde.,” Arch. Biochem. Biophys., vol. 144, p. 394–400., 1971. L.-J. C. Wong, S.S. y Wong, “Chemical crosslinking and the stabilization of proteins and enzymes.,” Enzym. Microb. Technol., vol. 14, p. 866-870., 1992. M. Busto, M.D., y Pérez-Mateos, “Extraction of humic-b-glucosidase fractions from soil.,” Biol. Fertil. Soils, vol. 20, p. 77–82., 1995. Dekker RFH., “Application of a magnetic immobilized ˇ-glucosidase in the enzymatic saccharification of steam-exploded lignocellilosic residues.,” Appl Biochem Biotechnol., vol. 23, p. :25–39. A. L. Rozo, W.E., Pacheco, J.C., Blanco, L.A., y Rueda, “Efecto del ión cobre (Cu 2+) en la producción de hecogenina en jugo de fique de la especie Furcraea macrophylla.,” Universidad Pedagógica y Tecnológica de Colombia, Colombia., 2012. Y. Kusano, G., Beisler, J., Sato, “Steroidal constituents of Solanum xanthocarpum.,” Phytochem., vol. 12, pp. 399–401, 1973. A. Castillo, Jorge E., Hurtado, Isabel C., and Chamorro, “Extracción y cuantificación del alcaloide esteroidal solasodina , de los frutos del Solanum wrightii Benth y el Solanum pseudocapsicum L,” vol. 6, pp. 57–62, 2012. A. A. Fayez, M.B.E., Saleh, “Constituents of local plants X. The esteroidal alkaloids of Solanum Wrightii Benth.,” Phytochem., vol. 6, p. 433–436., 1967. O. R. Motidóme, M., lLeekning, M.E., Gottlies, “A química de Solanáceaes Brasileiras. I-A Presenca de solamargina e de solasonina no juá o na lobeira.,” An. Acad. Bras. Cienc., vol. 42, p. 375.76, 1970. Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad de Ciencias. Escuela de Posgrados. Maestría en Química |
spellingShingle | Enzimas inmovilizadas Biorreactores Enzimas Enzimas Inmovilizadas - Biotecnología Maestría en Química - Tesis y disertaciones académicas García Colmenares, José Mauricio Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title | Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title_full | Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title_fullStr | Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title_full_unstemmed | Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title_short | Extracción de solasodina de la especie Solanum marginatun usando β-Glucosidasa inmovilizada sobre nanopartículas magnéticas de CoFe2O4 |
title_sort | extraccion de solasodina de la especie solanum marginatun usando β glucosidasa inmovilizada sobre nanoparticulas magneticas de cofe2o4 |
topic | Enzimas inmovilizadas Biorreactores Enzimas Enzimas Inmovilizadas - Biotecnología Maestría en Química - Tesis y disertaciones académicas |
url | http://repositorio.uptc.edu.co/handle/001/2582 |
work_keys_str_mv | AT garciacolmenaresjosemauricio extracciondesolasodinadelaespeciesolanummarginatunusandobglucosidasainmovilizadasobrenanoparticulasmagneticasdecofe2o4 |