Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido
1 recurso en línea (114 páginas) : ilustraciones color, figuras, tablas.
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Maestría |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2019
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/2584 |
_version_ | 1801705876725170176 |
---|---|
author | Cruz Pacheco, Andrés Felipe |
author2 | Gómez Cuaspud, Jairo Alberto |
author_facet | Gómez Cuaspud, Jairo Alberto Cruz Pacheco, Andrés Felipe |
author_sort | Cruz Pacheco, Andrés Felipe |
collection | DSpace |
description | 1 recurso en línea (114 páginas) : ilustraciones color, figuras, tablas. |
format | Trabajo de grado - Maestría |
id | repositorio.uptc.edu.co-001-2584 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2019 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-25842023-03-16T19:54:37Z Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido Cruz Pacheco, Andrés Felipe Gómez Cuaspud, Jairo Alberto Parra Vargas, Carlos Arturo Perovskita Pilas de combustible Maestría en Química - Tesis y disertaciones académicas Nanopartículas Materiales de nanoestructuras Método de combustión Nanomateriales Oxido de cerio Praseodimio SOFC 1 recurso en línea (114 páginas) : ilustraciones color, figuras, tablas. The properties of cerium dioxide are due to the fluorite crystal structure, which guarantees the mobility of oxygen ions and electrons on the surface and inside the material. In addition, the modification of cerium cations by praseodymium increase oxygen vacancies due to the interconversion of their oxidation states, causing in the solids, high structural stability at high temperatures, accompanied by improvements in the properties of ionic and electronic conductivity make it of great interest to be used as component in solid oxide fuel cells (SOFC). In this way, the (Ce1-xPrxO2 (X = 0.0, 0.2, 0.4, 0.6, 0.8) and Pr6O11) system were obtained by the combustion method using citric acid as a chelating agent. In order to determine the best synthesis conditions in terms of the optimum temperature for the consolidation of the desired crystalline phases, thermogravimetric and differential thermal analyzes (TGA-DTA) were performed in a temperature range between 25 °C and 1000 °C. After the combustion and calcination processes, the obtained solids were characterized by infrared spectroscopy (FTIR), to determine the absorption bands associated with the citrate species formed and the subsequent removal of them after the heat treatment. The structural and morphological characteristics that resulted in the different modifications of cerium oxide after the calcination process at 800 °C were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), evidencing the obtaining of nanometric crystallites with homogeneous morphology. The magnetic behavior of the different synthesized systems was evaluated by the measurements of magnetization as a function of the temperature and the applied magnetic field, showing that all modifications of cerium oxide with praseodymium ions and pure praseodymium oxide have a paramagnetic behavior, in contrast with CeO2, which exhibits a diamagnetic behavior. In the same way, the magnetic susceptibility analyzes allowed to give an approximation of the oxidation states of the Ce and Pr ions in each of the synthesized oxides, by calculating the effective magnetic moments. X-ray photoelectron spectroscopy (XPS) analyzes corroborated the magnetic analyzes as to the identification of the valences and binding energies of the cerium and praseodymium cations. Surface area analysis using nitrogen adsorption isotherms by the BET method revealed that all the systems synthesized exhibit values between 70 and 135 m2 g-1, with pore volumes consistent with the classification of mesoporous materials. The oxygen storage capacity (OSC) measurements show that the proportional substitution of Ce ions by Pr increases the oxygen storage due to the generation of oxygen vacancies, caused by the presence of Pr3+ ions. In order to determine the structural stability of each oxide synthesized in reducing environments, programmed hydrogen reduction (TPR-H2) experiments were carried out, which allowed us to determine that the materials are partially stable up to 830 ° C. Finally, the electrical characterization by impedance spectroscopy (IE) allowed the determination of the electrical and ionic conduction processes by analyzing the equivalent circuits and the Nyquist diagrams of all the synthesized and calcined solids, identifying the most relevant material in terms conduction, structural stability, morphology and texture to be a possible anodic component in solid oxide fuel cells. Las propiedades del dióxido de cerio se deben en gran medida a la estructura cristalina tipo fluorita, la cual garantiza la movilidad de iones oxígeno y electrones tanto en la superficie como al interior del material. Además, la modificación de cationes cerio por praseodimio logra aumentar las vacancias de oxígeno debido a la interconversión de sus estados de oxidación, provocando en los sólidos, alta estabilidad estructural a altas temperaturas, acompañada de las mejoras en las propiedades de conductividad iónica y electrónica que lo hacen de gran interés para ser usado como componente en pilas de combustible de óxido sólido (SOFC). En este sentido se obtuvieron cinco óxidos de cerio modificados con praseodimio y praseodimio puro (Ce1-xPrxO2 (X = 0.0, 0.2, 0.4, 0.6, 0.8) y Pr6O11) por el método de combustión, utilizando ácido cítrico como agente quelante. Para determinar las mejores condiciones de síntesis en términos de la temperatura óptima para la consolidación de las fases cristalinas deseadas se realizaron análisis termogravimétricos y térmicos diferenciales (ATG-ATD) en un intervalo de temperatura entre 25 °C y 1000 °C. Luego de los procesos de combustión y calcinación, los sólidos obtenidos se caracterizaron por espectroscopia infrarroja con transformada de Fourier (FTIR), para determinar las bandas de absorción asociadas con las especies citrato formadas y la posterior eliminación de las mismas luego del tratamiento térmico. Las características estructurales y morfológicas que resultaron en las diferentes modificaciones del óxido de cerio después del proceso de calcinación a 800 °C se analizaron, mediante difracción de rayos X (DRX), microscopia electrónica de transmisión (MET) y microscopia electrónica de barrido (MEB), evidenciándose la obtención de cristalitos nanométricos con morfología homogénea. El comportamiento magnético de los diferentes sistemas sintetizados se evaluó mediante las medidas de magnetización en función de la temperatura y el campo magnético aplicado, dejando entrever que todas las modificaciones del óxido de cerio con iones praseodimio y el óxido de praseodimio puro presentan un comportamiento paramagnético, en contraste con el CeO2, el cual exhibe un comportamiento diamagnético. De la misma manera, los análisis de susceptibilidad magnética permitieron dar una aproximación de los estados de oxidación en los que se encuentran los iones Ce y Pr en cada uno de los óxidos sintetizados, mediante el cálculo de los momentos magnéticos efectivos. Los análisis de espectroscopia fotoelectrónica de rayos X (XPS), corroboraron los análisis magnéticos, en cuanto a la identificación de los estados de oxidación y las energías de enlace de los cationes cerio y praseodimio. Los análisis de área superficial usando isotermas de adsorción de nitrógeno, por el método BET, revelo que todos los sistemas sintetizados exhiben valores entre 70 y 135 m2 g-1, con volúmenes de poro acordes a la clasificación de materiales mesoporosos. Las medidas de capacidad de almacenamiento de oxígeno (OSC), demuestran que la sustitución proporcional de iones Ce por Pr, incrementa el almacenamiento de oxígeno debido a la generación de vacancias de oxígeno, provocadas por la presencia de iones Pr3+. Para determinar la estabilidad estructural de cada óxido sintetizado en ambientes reductores, se llevaron a cabo experimentos de reducción a temperatura programada de hidrógeno (RTP-H2), los cuales permitieron determinar que los materiales son parcialmente estables hasta 830 °C. Por último, la caracterización eléctrica mediante espectroscopia de impedancias (EI), permitió determinar los procesos de conducción eléctrica y iónica mediante el análisis de los circuitos equivalentes y los diagramas de Nyquist de todos los sólidos sintetizados y calcinados, logrando identificar el material más relevante en términos de conducción, estabilidad estructural, morfología y textura para ser un posible componente anódico en pilas de combustible de óxido sólido. Bibliografía: páginas 104-114. Maestría Magíster en Química 2019-05-10T21:46:13Z 2019-05-10T21:46:13Z 2017 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Cruz Pacheco, A. F. (2017) . Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2584 http://repositorio.uptc.edu.co/handle/001/2584 spa J. Alvarado-Flores and L. Avalos-Rodríguez, “Materiales para ánodos, cátodos y electrolitos utilizados en celdas de combustible de óxido sólido (SOFC),” Rev. Mex. Física, vol. 59, no. 1, pp. 66–87, 2013. J. Qian, J. Hou, Z. Tao, and W. Liu, “Fabrication of (Sm, Ce)O2−δ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells,” J. Alloys Compd., vol. 631, pp. 255–260, 2015. Y. Ma, N. Fenineche, and O. Elkedim, “Ab initio study of La10−xSrx(Si,Ge)6O27−0.5x apatite for SOFC electrolyte,” Comput. Mater. Sci., vol. 109, pp. 25–33, 2015. Y. Li, J. Yang, and J. Song, “Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles,” Renew. Sustain. Energy Rev., vol. 67, pp. 160–172, 2017. W.-R. Chang, J.-J. Hwang, and W. Wu, “Environmental impact and sustainability study on biofuels for transportation applications,” Renew. Sustain. Energy Rev., vol. 67, pp. 277–288, 2017. L. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, “A review of fuel cell systems for maritime applications,” J. Power Sources, vol. 327, pp. 345–364, 2016. C. P. Lawrence, R. ElShatshat, M. M. A. Salama, and R. A. Fraser, “An efficient auxiliary system controller for Fuel Cell Electric Vehicle (FCEV),” Energy, vol. 116, pp. 417–428, 2016. V. B. V. Belenguer, “Electrodos avanzados para pilas de combustible de óxido sólido,” Universidad Politécnica de Valéncia, 2011. M. Yari, A. S. Mehr, S. M. S. Mahmoudi, and M. Santarelli, “A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester,” Energy, vol. 114, pp. 586–602, 2016. Y. Wang, D. Y. C. Leung, J. Xuan, and H. Wang, “A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells,” Renew. Sustain. Energy Rev., vol. 65, pp. 961–977, 2016. L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger-Wilckens, “Worldwide SOFC Technology Overview and Benchmark,” Int. J. Appl. Ceram. Technol., vol. 2, no. 6, pp. 482–492, Nov. 2005. K. Y. Rajpure, “Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method,” Superlattices Microstruct., vol. 77, pp. 181–195, 2015. M. Quintero, “Sintesis y caracterizacion de ferritas mixtas de cobalto y zinc, del tipo ZnxCo1-xFe2O2 (x=0, 0.3, 0.5) y estudio en la utilizacion de catalisadores,” Universidad de los Andes, 2008. M. Jahanbakhshi, “Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid,” Mater. Sci. Eng. C, vol. 70, pp. 544–551, 2017. J. H. Lunsford, “Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century,” Catal. Today, vol. 63, no. 2, pp. 165–174, 2000. L. C. Moreno, “Preparación y caracterización de perovskitas de cobalto y manganeso por los métodos citrato y atomización pirolítica (Spray Pyrolysis),” Univerisdad Nacional de Colombia, 2014. A. R. West, Solid State Chemistry and its applications, Segunda ed. Reino Unido, 2014. L. Suescun, “Caracterización estructural y magnética de compuestos REBaCuCoO5 de tipo perovskita 112 (RE: Tierra rara o Ytrio),” Universidad de la República, 2003. X. Xi, A. Kondo, and M. Naito, “Preparation and characterization of Ni-YSZ composite electrode for solid oxide fuel cells by different co-precipitation routes,” J. Alloys Compd., vol. 688, pp. 1047–1052, 2016. T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, and M. Sano, “Ru-catalyzed anode materials for direct hydrocarbon SOFCs,” Electrochim. Acta, vol. 48, no. 17, pp. 2531–2537, 2003. E. de J. Alcañiz, “Los elementos,” Universidad de Alcala, 2013. G. Niu, M. A. Schubert, F. d’Acapito, M. H. Zoellner, T. Schroeder, and F. Boscherini, “On the local electronic and atomic structure of Ce1−xPrxO2−δ epitaxial films on Si,” J. Appl. Phys., vol. 116, no. 12, p. 123515, Sep. 2014. D. A. Rothamer and T. J. Donohue, “Chemistry and combustion of fit-for-purpose biofuels,” Curr. Opin. Chem. Biol., vol. 17, no. 3, pp. 522–528, 2013. T. Shrinivasa, “Rudolf Diesel — The rational inventor of a heat engine,” Resonance, vol. 17, no. 4, pp. 319–320, Apr. 2012. J. M. Jaksic, F. Nan, G. D. Papakonstantinou, G. A. Botton, and M. M. Jaksic, “Theory, Substantiation, and Properties of Novel Reversible Electrocatalysts for Oxygen Electrode Reactions,” J. Phys. Chem. C, vol. 119, no. 21, pp. 11267–11285, May 2015. A. J. Appleby, “From Sir William Grove to today: fuel cells and the future,” J. Power Sources, vol. 29, no. 1–2, pp. 3–11, Jan. 1990. W. R. Grove, “On a Gaseous Voltaic Battery,” Philos. Mag., vol. 92, no. 31, pp. 3753–3756, Nov. 2012. A. E. Yilmaz and M. M. Ispirli, “An Investigation on the Parameters that Affect the Performance of Hydrogen Fuel Cell,” Procedia - Soc. Behav. Sci., vol. 195, pp. 2363–2369, Jul. 2015. C. M. Reid et al., “History of Electrochemical and Energy Storage Technology Development at NASA Glenn Research Center,” J. Aerosp. Eng., vol. 26, no. 2, pp. 361–371, Apr. 2013. “Ohio transit agency launches fuel cell bus project with NASA,” Fuel Cells Bull., vol. 2013, no. 1, p. 2, 2013. D. Cameron, “World developments of fuel cells,” Int. J. Hydrogen Energy, vol. 15, no. 9, pp. 669–675, 1990. J.-H. Koo and K.-T. Lee, “The effect of firing conditions on electrical conductivity and electrochemical properties of Sr0.8La0.2TiO3–Ce0.9Gd0.1O1.95 composite anodes for solid oxide fuel cells,” Ceram. Int., vol. 42, no. 2, pp. 2209–2213, 2016. F. Meng et al., “Hydrothermal synthesis of hexagonal CeO2 nanosheets and their room temperature ferromagnetism,” J. Alloys Compd., vol. 647, pp. 1013–1021, 2015. X.-M. Ge, S.-H. Chan, Q.-L. Liu, and Q. Sun, “Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization,” Adv. Energy Mater., vol. 2, no. 10, pp. 1156–1181, Oct. 2012.02bgfc A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, and A. G. Olabi, “Developments in fuel cell technologies in the transport sector,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16499–16508, 2016. J. Nease, N. Monteiro, and T. A. Adams, “Application of a two-level rolling horizon optimization scheme to a solid-oxide fuel cell and compressed air energy storage plant for the optimal supply of zero-emissions peaking power,” Comput. Chem. Eng., vol. 94, pp. 235–249, 2016. H.-H. Möbius, “On the history of solid electrolyte fuel cells,” J. Solid State Electrochem., vol. 1, no. 1, pp. 2–16, Jul. 1997. S. de Souza, S. J. Visco, and L. C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature,” Solid State Ionics, vol. 98, no. 1, pp. 57–61, 1997. G. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus, and J. J. Egan, “Measurement of electronic conduction in cryolite alumina melts and estimation of its effect on current efficiency,” Metall. Trans. B, vol. 24, no. 5, pp. 729–735, Oct. 1993. E. Baur and H. Preis, “Über Brennstoff‐Ketten mit Festleitern,” Berichte der Bunsengesellschaft für Phys. Chemie, vol. 43, no. 9, pp. 727–732, 1937. E. Fabbri, D. Pergolesi, and E. Traversa, “Ionic conductivity in oxide heterostructures: the role of interfaces,” Sci. Technol. Adv. Mater., vol. 11, no. 5, p. 54503, Oct. 2010. B. Zhu, “Next generation fuel cell R&D,” Int. J. Energy Res., vol. 30, no. 11, pp. 895–903, Sep. 2006. X. X. Guo, I. Matei, J.-S. Lee, and J. Maier, “Ion conduction across nanosized CaF2∕BaF2 multilayer heterostructures,” Appl. Phys. Lett., vol. 91, pp. 103102, 2007. M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, “Synthesis and characterization of CeO2 nanoparticles via hydrothermal route,” J. Ind. Eng. Chem., vol. 21, pp. 1301–1305, 2015. X. Ji et al., “Enhanced activities of nano-CeO2−δ@430L composites by zirconium doping for hydrogen electro-oxidation in solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 41, no. 26, pp. 11331–11339, 2016 N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review,” Prog. Mater. Sci., vol. 72, pp. 141–337, 2015. S. Somacescu, L. Navarrete, M. Florea, J. M. Calderon-Moreno, and J. M. Serra, “Self-assembled (Ni/Cu, Ti)-YSZ with potential applications for IT-SOFCs: Catalytic and electrochemical assessment,” J. Alloys Compd., vol. 690, pp. 873–883, 2017. J. S. A. Carneiro, R. A. Brocca, M. L. R. S. Lucena, and E. Nikolla, “Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides,” Appl. Catal. B Environ., vol. 200, pp. 106–113, 2017. Y. Ji, H. Wang, and H. Zhang, “Gd0.8Sr0.2CoO3-δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells,” Mater. Res. Bull., vol. 85, pp. 30–34, 2017. C.-C. Yu et al., “Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell,” ACS Appl. Mater. Interfaces, vol. 8, no. 16, pp. 10343–10349, Apr. 2016. Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, “A perspective on low-temperature solid oxide fuel cells,” Energy Environ. Sci., vol. 9, no. 5, pp. 1602–1644, 2016. K. C. Wincewicz and J. S. Cooper, “Taxonomies of SOFC material and manufacturing alternatives,” J. Power Sources, vol. 140, no. 2, pp. 280–296, 2005. M. Kogler, E.-M. Köck, B. Klötzer, L. Perfler, and S. Penner, “Surface Reactivity of YSZ, Y2O3, and ZrO2 toward CO, CO2, and CH4: A Comparative Discussion,” J. Phys. Chem. C, vol. 120, no. 7, pp. 3882–3898, Feb. 2016. W. Shen and J. L. Hertz, “Ionic conductivity of YSZ/CZO multilayers with variable lattice mismatch,” J. Mater. Chem. A, vol. 3, no. 5, pp. 2378–2386, 2015. I. Ruiz de Larramendi et al., “Pr-doped ceria nanoparticles as intermediate temperature ionic conductors,” Int. J. Hydrogen Energy, vol. 36, pp. 10981–10990, 2011. Y. Endo, A. Dempoh, T. Terai, and A. Suzuki, “Grain Size Effect on Conductivity of LSGM Thin Film Electrolyte for Solid Oxide Fuel Cell,” ECS Trans., vol. 68, no. 1, pp. 441–447, Jul. 2015. T. Masui, R. Nagai, and N. Imanaka, “Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis,” J. Solid State Chem., vol. 220, pp. 181–184, 2014. M. Irshad et al., “High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC,” AIP Adv., vol. 6, no. 2, p. 25202, Feb. 2016. Z. Tao et al., “The co-doping effect of Sm and In on ceria for electrolyte application in IT-SOFC,” J. Alloys Compd., vol. 663, pp. 750–754, 2016. T. Ramos, S. Veltzé, B. R. Sudireddy, P. S. Jørgensen, L. Theil Kuhn, and P. Holtappels, “Effect of Ru/CGO versusNi/CGO Co-Infiltration on the Performance and Stability of STN-Based SOFCs,” Fuel Cells, vol. 14, no. 6, pp. 1062–1065, Dec. 2014. A. J. Jacobson, “Materials for Solid Oxide Fuel Cells,” Chem. Mater., vol. 22, no. 3, pp. 660–674, Feb. 2010. H. Mieda, A. Mineshige, A. Saito, T. Yazawa, H. Yoshioka, and R. Mori, “Influence of nano-sized LSCF cathode and its firing temperature on electrochemical performance in oxygen-excess-type solid electrolyte (OESE)-based fuel cells,” J. Power Sources, vol. 272, pp. 422–426, 2014. L. Malavasi, C. A. J. Fisher, and M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features,” Chem. Soc. Rev., vol. 39, no. 11, p. 4370, 2010. M. Li et al., “A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3,” Nat Mater, vol. 13, no. 1, pp. 31–35, Jan. 2014. T. Wei, P. Singh, Y. Gong, J. B. Goodenough, Y. Huang, and K. Huang, “Sr3−3xNa3xSi3O9−1.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells,” Energy Environ. Sci., vol. 7, no. 5, p. 1680, 2014. M. A. Vasiliades, M. M. Makri, P. Djinović, B. Erjavec, A. Pintar, and A. M. Efstathiou, “Dry reforming of methane over 5wt% Ni/Ce1-xPrxO2-δ catalysts: Performance and characterisation of active and inactive carbon by transient isotopic techniques,” Appl. Catal. B Environ., vol. 197, pp. 168–183, 2016. P. Singh and J. B. Goodenough, “Monoclinic Sr1–xNaxSiO3–0.5x: New Superior Oxide Ion Electrolytes,” J. Am. Chem. Soc., vol. 135, no. 27, pp. 10149–10154, Jul. 2013. D. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, “Enhanced long-term stability of bismuth oxide-based electrolytes for operation at 500 °C,” Ionics (Kiel)., vol. 16, no. 2, pp. 97–103, Mar. 2010. V. Ramasamy and G. Vijayalakshmi, “Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles,” Superlattices Microstruct., vol. 85, pp. 510–521, 2015. R. K. Nimat, R. S. Joshi, and S. H. Pawar, “Temperature dependent conductivity and dielectric properties of Bi2V0.9Cu0.1O5.35 solid electrolyte thin films,” Mater. Sci. Eng. B, vol. 137, no. 1, pp. 93–98, 2007. Y. Shirai et al., “Crystal structure and thermal expansion behavior of oxygen stoichiometric lanthanum strontium manganite at high temperature,” Solid State Ionics, vol. 256, pp. 83–88, 2014. R. Moriche, D. Marrero-López, F. J. Gotor, and M. J. Sayagués, “Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis,” J. Power Sources, vol. 252, pp. 43–50, 2014. E.-M. Köck, M. Kogler, T. Götsch, B. Klötzer, and S. Penner, “Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases,” Phys. Chem. Chem. Phys., vol. 18, no. 21, pp. 14333–14349, 2016. L. Jia et al., “Oxygen adsorption properties on a palladium promoted La1−xSrxMnO3 solid oxide fuel cell cathode,” RSC Adv., vol. 5, no. 10, pp. 7761–7765, 2015. Y. Chen, K. Gerdes, and X. Song, “Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells,” Sci. Rep., vol. 6, p. 32997, Sep. 2016. T. Ishihara, Ed., Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009. A. Kaddouri, S. Bassil, B. Béguin, and P. Gélin, “On the sol–gel synthesis and catalytic activity of Ce1−xAxO2−δ (A = Pr, Sm, Gd) SOFCs anode materials for reforming of methane,” J. Sol-Gel Sci. Technol., vol. 67, no. 1, pp. 175–181, Jul. 2013. J. T. Mefford et al., “Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts,” Nat. Commun., vol. 7, p. 11053, Mar. 2016. S. Y. Smolin, M. D. Scafetta, A. K. Choquette, M. Y. Sfeir, J. B. Baxter, and S. J. May, “Static and Dynamic Optical Properties of La1–xSrxFeO3−δ: The Effects of A-Site and Oxygen Stoichiometry,” Chem. Mater., vol. 28, no. 1, pp. 97–105, Jan. 2016. J. Alvarado-Flores, J. Espino-Valencia, and L. Ávalos-Rodríguez, “Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc’s,” Rev. Mex. física, vol. 61, no. 1, pp. 32–57, 2015. E. Y. Gerasimov, L. A. Isupova, and S. V. Tsybulya, “Microstructural features of the La1−xCaxFeO3−δ solid solutions prepared via Pechini route,” Mater. Res. Bull., vol. 70, pp. 291–295, Oct. 2015. N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, “Quantum Origin of the Oxygen Storage Capability of Ceria,” Phys. Rev. Lett., vol. 89, no. 16, p. 166601, Sep. 2002. C. Sun et al., “Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres,” J. Phys. Chem. B, vol. 110, no. 27, pp. 13445–13452, Jul. 2006. K. Mudiyanselage, I. Al-Shankiti, A. Foulis, J. Llorca, and H. Idriss, “Reactions of ethanol over CeO2 and Ru/CeO2 catalysts,” Appl. Catal. B Environ., vol. 197, pp. 198–205, 2016. B. Timurkutluk, C. Timurkutluk, M. D. Mat, and Y. Kaplan, “A review on cell/stack designs for high performance solid oxide fuel cells,” Renew. Sustain. Energy Rev., vol. 56, pp. 1101–1121, 2016. E. Varga et al., “The Effect of Rh on the Interaction of Co with Al2O3 and CeO2 Supports,” Catal. Letters, vol. 146, no. 9, pp. 1800–1807, Sep. 2016. A. Vita, C. Italiano, C. Fabiano, L. Pino, M. Laganà, and V. Recupero, “Hydrogen-rich gas production by steam reforming of n-dodecane: Part I: Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration,” Appl. Catal. B Environ., vol. 199, pp. 350–360, 2016. O. C. Vergara-Estupiñán and J. A. Gómez-Cuaspud, “Synthesis and Characterization of the La0.95Sr0.05CrO3,” Cienc. en Desarro., vol. 6, no. 1, pp. 119–125, 2015. C. Esther Jeyanthi, R. Siddheswaran, P. Kumar, M. Karl Chinnu, K. Rajarajan, and R. Jayavel, “Investigation on synthesis, structure, morphology, spectroscopic and electrochemical studies of praseodymium-doped ceria nanoparticles by combustion method,” Mater. Chem. Phys., vol. 151, pp. 22–28, 2015. V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J.-C. Grenier, and J.-M. Bassat, “La2−xPrxNiO4+δ as suitable cathodes for metal supported SOFCs,” Solid State Ionics, vol. 278, pp. 32–37, 2015. A. Kaddouri and B. Béguin, “Methane steam reforming in the absence and presence of H2S over Ce0.8Pr0.2O2−δ, Ce0.85Sm0.15O2−δ and Ce0.9Gd0.1O2−δ SOFCs anode materials,” Catal. Commun., vol. 46, pp. 22–27, 2014. G. Accardo, C. Ferone, R. Cioffi, D. Frattini, L. Spiridigliozzi, and G. Dell’Agli, “Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route.,” J. Appl. Biomater. Funct. Mater., vol. 14, no. 1, pp. 35-41, Apr. 2016. M. Balaguer, C. Solís, S. Roitsch, and J. M. Serra, “Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ + Co 2 mol%,” Dalt. Trans., vol. 43, no. 11, pp. 4305–4312, 2014. N. Paunović et al., “Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals,” Nanoscale, vol. 4, no. 17, p. 5469, 2012. C.-L. Chang, C.-S. Hsu, J.-B. Huang, P.-H. Hsu, and B.-H. Hwang, “Preparation and characterization of SOFC cathodes made of SSC nanofibers,” J. Alloys Compd., vol. 620, pp. 233–239, 2015. N. Pannier, A. Guglielmetti, L. Van Brutzel, and A. Chartier, “Molecular dynamics study of Frenkel pair recombinations in fluorite type compounds,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 267, no. 18, pp. 3118–3121, 2009. J. A. Gómez-Cuaspud and M. Schmal, “Nanostructured metal oxides obtained by means polymerization-combustion at low temperature for CO selective oxidation,” Int. J. Hydrogen Energy, vol. 38, no. 18, pp. 7458–7468, 2013. H. Taguchi, R. Chiba, T. Komatsu, H. Orui, K. Watanabe, and K. Hayashi, “LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2,” J. Power Sources, vol. 241, pp. 768–775, Nov. 2013. P. Delgado–Niño, S. A. López–Rivera, L. Mestres–Vila, M. L. Martínez–Sarrión, and J. S. Valencia–Ríos, “Optical and structural characterization of SrZr0.1Ti0.9O3,” J. Lumin., vol. 132, no. 10, pp. 2546–2552, 2012. O. A. Gerena, J. B. Carda, H. Beltrán, E. Cordoncillo Cordoncillo, and J. S. Valencia, “Síntesis, caracterización y evaluación eléctrica de circonatos de bario dopados con lantánidos trivalentes,” Boletín la Soc. Española Cerámica y Vidr., vol. 53, no. 2, pp. 60–68, 2014. M. S. Hegde, G. Madras, and K. C. Patil, “Noble Metal Ionic Catalysts,” Acc. Chem. Res., vol. 42, no. 6, pp. 704–712, Jun. 2009. F. Deganello, G. Marcì, and G. Deganello, “Citrate–nitrate autocombustion synthesis of perovskite type nanopowders: A systematic approach,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 439–450, Feb. 2009. X. Li, Z. Feng, J. Lu, F. Wang, M. Xue, and G. Shao, “Synthesis and electrical properties of Ce1−xGdxO2−x/2 (x=0.05–0.3) solid solutions prepared by a citrate–nitrate combustion method,” Ceram. Int., vol. 38, no. 4, pp. 3203–3207, 2012. C. E. Jeyanthi, R. Siddheswaran, P. Kumar, V. S. Shankar, and K. Rajarajan, “Structural and spectroscopic studies of rare earths doped ceria,” Ceram. Int., vol. 40, no. 6, pp. 8599–8605, 2014. A. F. Cruz Pacheco, J. A. Gómez Cuaspud, and C. A. Para Vargas, “Synthesis, characterization and magnetic evaluation of praseodymium modified cerium oxide,” J. Phys. Conf. Ser., vol. 786, no. 1, p. 12023, Jan. 2017. V. B. Vert-Belenguer, “Electrodos avanzados para pilas de combustible de óxido sólido (SOFCs),” Universitat Politècnica De València, 2011. J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens. Matter, vol. 192, no. 1, pp. 55–69, 1993. C. Sun, H. Li, and L. Chen, “Nanostructured ceria-based materials: synthesis, properties, and applications,” Energy Environ. Sci., vol. 5, no. 9, p. 8475, 2012. B. M. Abu-zied, Y. A. Mohamed, and A. M. Asiri, “Fabrication, characterization, and electrical conductivity properties of Pr6O11 nanoparticles,” J. Rare Earths, vol. 31, no. 7, pp. 701–708, 2013. N. Jaiswal, B. Gupta, D. Kumar, and O. Parkash, “Effect of addition of erbium stabilized bismuth oxide on the conductivity of lanthanum doped ceria solid electrolyte for IT-SOFCs,” J. Alloys Compd., vol. 633, pp. 174–182, 2015. M. Balaguer-Ramírez, “New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranes,” Universitat Politècnica de València, 2013. C. E. Alarcón Suesca, “Síntesis y caracterización estructural, eléctrica y magnética de la perovskita compleja Sr2TiMoO6 utilizando el método de reacción de estado sólido,” Universidad Nacional de Colombia, 2011 Q. Design, “Versalab 3 tesla, cryogen free physical property measurement system,” 2017. [Online]. Available: https://www.qdusa.com/products/versalab.html. D. L. C. Wencel, “X-ray Photoelectron Spectroscopy,” Universidad Nacional Autónoma de México, 2017. J. A. Cuervo-Farfán, “Propiedades estructurales y espectroscopía de impedancia del estanato tipo perovskita (Ba,Sr)SnO3,” Universidad Nacional de Colombia, 2011. J. L. Vázquez-Gutiérrez, “Empleo de la técnica de espectroscopía de impedancias electroquímicas para la caracterización de biomateriales. Aplicación a una aleación biomédica de Co-Cr-Mo,” Universidad Politécnica de Valencia, 2007. M. López-Blanco, “Síntesis, caracterización estructural y eléctrica de materiales tipo columbita y tri-rutilos ANb2-xTaxO6 (A=Ni y Mn) y de algunos derivados sustituidos-Ti,” Universidad Carlos III de Madrid, 2011. J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: Characterization by Impedance Spectroscopy,” Adv. Mater., vol. 2, no. 3, pp. 132–138, 1990. H. Beltrán, B. Gómez, N. Masó, E. Cordoncillo, P. Escribano, and A. R. West, “Electrical properties of ferroelectric BaTi2O5 and dielectric Ba6Ti17O40 ceramics,” J. Appl. Phys., vol. 97, no. 8, p. 84104, Apr. 2005. B. Stojadinović et al., “Comparative study of structural and electrical properties of Pr and Ce doped BiFeO3 ceramics synthesized by auto-combustion method,” J. Alloys Compd., vol. 657, pp. 866–872, Feb. 2016. C. E. Jeyanthi, R. Siddheswaran, R. Medlín, M. K. Chinnu, R. Jayavel, and K. Rajarajan, “Electrochemical and structural analysis of the RE3+: CeO2 nanopowders from combustion synthesis,” J. Alloys Compd., vol. 614, pp. 118–125, 2014. J. A. Gómez-Cuaspud, J. S. Valencia-Ríos, and J. B. Carda-Castelló, “Preparation and characterization of perovskite oxides by polymerization-combustion,” J. Chil. Chem. Soc., vol. 55, no. 4, pp. 445–449, Dec. 2010. I. L. Samperio-Gómez, A. M. Bolarín-Miró, F. Sánchez-De Jesús, and C. A. Cortés-Escobedo, “Reducción química de NiO-8YSZ para la obtención de Cermets Ni-8YSZ útiles como ánodos en celdas de combustible de óxido sólido,” Superf. y vacío, vol. 26, no. 2, pp. 50–53, 2013. N. S. Gajbhiye, U. Bhattacharya, and V. S. Darshane, “Thermal decomposition of zinc-iron citrate precursor,” Thermochim. Acta, vol. 264, pp. 219–230, 1995. G. Mustafa et al., “Temperature dependent structural and magnetic properties of Cerium substituted Co – Cr ferrite prepared by auto-combustion method,” J. Magn. Magn. Mater., vol. 378, pp. 409–416, 2015. Ž. Petrović et al., “Formation of RuO2 nanoparticles by thermal decomposition of Ru(NO)(NO3)3,” Ceram. Int., vol. 41, no. 6, pp. 7811–7815, Jul. 2015. R. J. Gorte and J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons,” J. Catal., vol. 216, no. 1, pp. 477–486, 2003 A. M. Wahba, N. Aboulfotoh-Ali, and M. M. Eltabey, “Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method,” Mater. Chem. Phys., vol. 146, no. 3, pp. 224–229, Aug. 2014. S. Johnson Jeyakumar, T. Dhanushkodi, I. Kartharinal Punithavathy, and M. Jothibas, “A facile route to synthesis of hexagonal shaped CeO2 nanoparticles,” J. Mater. Sci. Mater. Electron., vol. 28, no. 4, pp. 3740–3745, 2017 C. Binet, A. Badri, and J.-C. Lavalley, “A Spectroscopic Characterization of the Reduction of Ceria from Electronic Transitions of Intrinsic Point Defects,” J. Phys. Chem., vol. 98, no. 25, pp. 6392–6398, Jun. 1994. M. A. . Monteiro, “Investigação Fotoluminescente de sistemas contendo Alumina dopada com Íons de Terras Raras: Preparados pelos métodos Cerâmico, Combustão e Pechini,” Universidade de São Paulo (USP), 2005. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976. M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, vol. 129, no. 1, pp. 63–94, 2000. C. Artini, M. Pani, M. M. Carnasciali, M. T. Buscaglia, J. R. Plaisier, and G. A. Costa, “Structural Features of Sm- and Gd-Doped Ceria Studied by Synchrotron X-ray Diffraction and μ-Raman Spectroscopy,” Inorg. Chem., vol. 54, no. 8, pp. 4126–4137, Apr. 2015. J. Zhang, R. B. Von Dreele, and L. Eyring, “Structures in the Oxygen-Deficient Fluorite-Related RnO2n−2 Homologous Series: Pr12O22,” J. Solid State Chem., vol. 122, no. 1, pp. 53–58, 1996. A. L. A. da Silva, “Síntese e caracterização de cromitas de lantânio dopadas com estrôncio e bário para aplicação em células a combustível de óxido sólido,” Universidad Federal de Rio de Janeiro, 2011. J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, “Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb,” J. Appl. Phys., vol. 76, no. 4, pp. 2435–2441, Aug. 1994. R. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, “High temperature properties of Ce1-xPrxO2-δ as an active layer material for SOFC cathodes,” Solid State Ionics, vol. 197, no. 1, pp. 42–48, Aug. 2011 O. Mendiuk, M. Nawrocki, and L. Kepinski, “The synthesis of Ce1−xLnxO2−y (Ln=Pr, Sm, Gd, Tb) nanocubes by hydrothermal methods,” Ceram. Int., vol. 42, no. 1, pp. 1998–2012, Jan. 2016. G. Niu et al., “Oxygen Vacancy Induced Room Temperature Ferromagnetism in Pr-Doped CeO2 Thin Films on Silicon,” ACS Appl. Mater. Interfaces, vol. 6, no. 20, pp. 17496–17505, Oct. 2014. M. Oumezzine et al., “Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33−xMnO3 (x=0, 0.05, and 0.1) manganite,” J. Alloys Compd., vol. 582, pp. 640–646, 2014. G. I. Supelano, C. A. Parra Vargas, A. J. Barón-González, A. Sarmiento Santos, and C. Frontera, “Structural study of CaMn1−xMoxO3 (0.08 ≤ x ≤ 0.12) system by neutron powder diffraction,” J. Alloys Compd., vol. 676, pp. 575–581, 2016. S. Hao, J. Hou, P. Aprea, and F. Pepe, “Mesoporous CePrO solid solution with efficient photocatalytic activity under weak daylight irradiation,” Appl. Catal. B Environ., vol. 160, pp. 566–573, 2014. M. H. Zoellner et al., “Stoichiometry–structure correlation of epitaxial Ce1−xPrxO2−δ (x=0−1) thin films on Si(111),” J. Cryst. Growth, vol. 355, no. 1, pp. 159–165, 2012. L. Ding and S. Hu, “Effect of nano-CeO2 on microstructure and wear resistance of Co-based coatings,” Surf. Coatings Technol., vol. 276, pp. 565–572, 2015. S. Lütkehoff and M. Neumann, “3d and 4d x-ray-photoelectron spectra of Pr under gradual oxidation,” Phys. Rev. B, vol. 52, no. 19, pp. 13808–13811, Nov. 1995. N. Guillén-Hurtado, A. García-García, and A. Bueno-López, “Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts,” Appl. Catal. B Environ., vol. 174, pp. 60–66, 2015. D. H. Everett, “Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry,” Pure Appl. Chem., vol. 31, no. 4, pp. 577–638, Jan. 1972. F. Tietz, “Materials Selection for Solid Oxide Fuel Cells,” Mater. Sci. Forum, vol. 426–432, pp. 4465–4470, 2003. J. A. Gómez-Cuaspud, “Synthesis and characterization of cerium fluorites based on Ce1-xLnxO2-δ system (Ln: Nd3+, Sm3+, Eu3+, Gd3+, Dy3+ and Ho3+),” J. Chil. Chem. Soc., vol. 60, no. 2, pp. 2890–2895, Jun. 2015. N. F. P. Ribeiro, R. C. R. Neto, M. M. V. M. Souza, and M. Schmal, “Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production,” Int. J. Hydrogen Energy, vol. 35, no. 21, pp. 11725–11732, 2010. H. Zhu, Z. Qin, W. Shan, W. Shen, and J. Wang, “Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents,” J. Catal., vol. 225, no. 2, pp. 267–277, 2004. F. V. Vityazev et al., “Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract,” Carbohydr. Polym., vol. 157, pp. 9–20, 2017. Q. Jin, Y. Shen, and S. Zhu, “Praseodymium Oxide Modified CeO2/Al2O3 Catalyst for Selective Catalytic Reduction of NO by NH3,” Chinese J. Chem., vol. 34, no. 12, pp. 1283–1290, 2016. B. C. H. Steele, “Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C,” Solid State Ionics, vol. 129, no. 1, pp. 95–110, 2000. M. Shamshi Hassan, M. Shaheer Akhtar, K.-B. Shim, and O.-B. Yang, “Morphological and Electrochemical Properties of Crystalline Praseodymium Oxide Nanorods,” Nanoscale Res. Lett., vol. 5, no. 4, pp. 735, 2010. H. E. Liying, S. U. Yumin, J. Lanhong, and S. H. I. Shikao, “Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies : a review,” J. Rare Earths, vol. 33, no. 8, pp. 791–799, 2015. S.-H. Pi et al., “Performance and Durability of Anode-Supported Flat-Tubular Solid Oxide Fuel Cells with Ag-Infiltrated Cathodes,” J. Nanosci. Nanotechnol., vol. 14, no. 10, pp. 7668–7673, Oct. 2014. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, “Fundamentals and Catalytic Applications of CeO2-Based Materials,” Chem. Rev., vol. 116, no. 10, pp. 5987–6041, May 2016. M. Fernández-García, A. Martínez-Arias, J. C. Hanson, and J. A. Rodriguez, “Nanostructured Oxides in Chemistry: Characterization and Properties,” Chem. Rev., vol. 104, no. 9, pp. 4063–4104, Sep. 2004. M. Ghose, S. Banerjee, S. Patra, and K. K. Mukherjea, “Synthesis, structure and artificial protease activities of two cerium (III) complexes,” J. Lumin., vol. 180, pp. 224–233, 2016. A. Fujimori, “Mixed-valent ground state of CeO2,” Phys. Rev. B, vol. 28, no. 4, pp. 2281–2283, Aug. 1983. Y. Wu et al., “Microstructure and ferromagnetism of Co-doped CeO2 nano-octahedrons,” Mater. Lett., vol. 183, pp. 161–164, 2016. M. Noked, E. Avraham, Y. Bohadana, A. Soffer, and D. Aurbach, “Development of Anion Stereoselective, Activated Carbon Molecular Sieve Electrodes Prepared by Chemical Vapor Deposition,” J. Phys. Chem. C, vol. 113, no. 17, pp. 7316–7321, Apr. 2009. J. L. Sun et al., “Synthesis and electrical properties of screen-printed doped ceria interlayer for IT-SOFC applications,” J. Alloys Compd., vol. 628, pp. 450–457, 2015. S. Anirban, T. Paul, P. T. Das, T. K. Nath, and A. Dutta, “Microstructure and electrical relaxation studies of chemically derived Gd–Nd co-doped nanocrystalline ceria electrolytes,” Solid State Ionics, vol. 270, pp. 73–83, 2015. H. L. Tuller, S. R. Bishop, D. Chen, Y. Kuru, J. Kim, and T. S. Stefanik, “Praseodymium doped ceria : Model mixed ionic electronic conductor with coupled electrical , optical , mechanical and chemical properties,” Solid State Ionics, vol. 225, pp. 194–197, 2012. G. C. Kostogloudis, A. Ahmad-Khanlou, A. Naoumidis, and D. Stöver, “Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte,” Solid State Ionics, vol. 134, no. 1, pp. 127–138, 2000. L. G. Rovira et al., “Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation,” Catal. Today, vol. 180, no. 1, pp. 167–173, 2012. M. B. Kolli et al., “Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension,” Biomaterials, vol. 35, no. 37, pp. 9951–9962, Dec. 2014. E. C. Martín, “Síntesis y caracterización de materiales cerámicos y/o metálicos y desarrollo de ensamblajes de electrodo-membrana, para aplicaciones electroquímicas y electrocatalíticas,” Universidad Autónoma de Madrid, 2003. R. M. Ormerod, “Solid oxide fuel cells,” Chem. Soc. Rev., vol. 32, no. 1, pp. 17–28, Dec. 2003. F. Deganello, G. Marcì, and G. Deganello, “Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 439–450, 2009. V. Sarıboğa and M. A. Faruk Öksüzömer, “Cu-CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics,” J. Alloys Compd., vol. 688, pp. 323–331, 2016. B. Chen, G. Rao, S. Wang, Y. Lan, L. Pan, and X. Zhang, “Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method,” Mater. Lett., vol. 154, pp. 160–162, Sep. 2015. M. H. Castaño, R. Molina, and S. Moreno, “Catalizadores de manganeso sintetizados por autocombustión y coprecipitación y su empleo en la oxidación del 2-propanol,” Rev. Acad. Colomb. Cienc, vol. 39, pp. 26–35, 2015. Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad de Ciencias. Escuela de Posgrados. Maestría en Química |
spellingShingle | Perovskita Pilas de combustible Maestría en Química - Tesis y disertaciones académicas Nanopartículas Materiales de nanoestructuras Método de combustión Nanomateriales Oxido de cerio Praseodimio SOFC Cruz Pacheco, Andrés Felipe Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title | Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title_full | Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title_fullStr | Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title_full_unstemmed | Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title_short | Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido |
title_sort | sintesis y caracterizacion de oxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de oxido solido |
topic | Perovskita Pilas de combustible Maestría en Química - Tesis y disertaciones académicas Nanopartículas Materiales de nanoestructuras Método de combustión Nanomateriales Oxido de cerio Praseodimio SOFC |
url | http://repositorio.uptc.edu.co/handle/001/2584 |
work_keys_str_mv | AT cruzpachecoandresfelipe sintesisycaracterizaciondeoxidosnanoestructuradosdeceriomodificadosconpraseodimioparaseraplicadosenpilasdecombustibledeoxidosolido |