_version_ 1801705883642626048
author Pérez Corría, Kirenia
Botello León, Aroldo
Mauro Félix, Abril Karina
Rivera Pineda, Franklin
Viana, María Teresa
Cuello Pérez, Maribel
Botello Rodríguez, Arnaldo
Martínez Aguilar, Yordan
author_facet Pérez Corría, Kirenia
Botello León, Aroldo
Mauro Félix, Abril Karina
Rivera Pineda, Franklin
Viana, María Teresa
Cuello Pérez, Maribel
Botello Rodríguez, Arnaldo
Martínez Aguilar, Yordan
author_sort Pérez Corría, Kirenia
collection DSpace
description 1 recurso en línea (páginas 79-92)
format Artículo de revista
id repositorio.uptc.edu.co-001-2838
institution Repositorio Institucional UPTC
language eng
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-28382021-02-10T19:29:09Z Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed Composición química de la lombriz de tierra (Eisenia foetida) presecada con harinas vegetales como alimento animal Pérez Corría, Kirenia Botello León, Aroldo Mauro Félix, Abril Karina Rivera Pineda, Franklin Viana, María Teresa Cuello Pérez, Maribel Botello Rodríguez, Arnaldo Martínez Aguilar, Yordan Harina de lombriz de tierra Lombriz de tierra - Nutrición Lombricultura - Aspectos nutricionales Agrosavia Corn meal Earthworm Protein source Rice powder Soy cake meal Wheat bran 1 recurso en línea (páginas 79-92) To evaluate the chemical composition of the earthworm (Eisenia foetida) co-dried (EW) with vegetable meals (VM) as animal feed ingredient, the blends were mixed with wheat bran (WB), rice powder (RP), corn meal (CM) and soy cake meal (SCM) in proportions of 85:15; 75:25 and 65:35. The dry matter (DM), crude protein (CP), crude fat (CFA), crude fiber (CF), ashes and nitrogen-free extract (NFE) of the ingredients and final mixtures were determined. All the mixtures resulted with a high content of DM (≥90.00 %). No significant differences among the proportions were revealed (P>0.05). In addition, the higher inclusion of the earthworm in the proportions (85:15) increased (P<0.05) the CP (54.70 %), CFA (7.28 %), and ashes (10.20 %), mainly when mixed with SCM, CM, and RP, respectively. However, the use of vegetable meals proportionally increased the CF (7.31 %), and NFE (52.62 %), mainly with the proportion of 65:35 and with RP and CM, respectively (P<0.05). The results showed that the vegetable meals (WB, RP, CM, and SCM) are useful to co-dry the earthworm to be use for animal feed. It is concluded that the most appropriate proportion (VM:EW) will depend on the animal species, productive stage and market requirement. Para evaluar la composición química de la lombriz de tierra (Eisenia foetida) (LT) presecada con harinas vegetales (HV) como alimento animal, las mezclas se secaron individualmente y se elaboraron distintas premezclas con salvado de trigo (ST), polvo de arroz (PA), harina de maíz (HM) y harina de pasta de soya (HPS) en proporciones de 85:15; 75:25 y 65:35. Se determinó la materia seca (MS), proteína cruda (PC), grasa cruda (GC), fibra cruda (FC), cenizas y extracto libre de nitrógeno (ELN) de los ingredientes y de las mezclas finales. Todas las mezclas mostraron un alto contenido de MS (≥90.00 %). No se revelaron diferencias significativas entre las proporciones (P>0.05). La mayor inclusión de la lombriz de tierra en las proporciones (85:15) incrementó (P<0.05) la PC, GC y cenizas, principalmente cuando se mezcló con la harina de soya, harina de maíz y polvo de arroz, respectivamente. Sin embargo, el uso de las harinas vegetales incrementó proporcionalmente la FC (7,31 %) y el ELN (52.62 %), especialmente con la proporción de 65:35 y con PA y HM, respectivamente (P<0.05). Los resultados mostraron que las harinas de vegetales (WB, RP, CM y SCM) son útiles para presecar la lombriz de tierra para uso en la alimentación animal. Se concluye que la proporción más adecuada (VM:EW) dependerá de las especies animales, la etapa productiva y los requisitos del mercado. Bibliografía y webgrafía: páginas 88-92 2019-09-10T14:45:55Z 2019-09-10T14:45:55Z 2019-05-01 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Pérez Corría, K. y otros. (2019). Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed. Revista Ciencia y Agricultura, 16(2), 79-92. DOI: https://doi.org/10.19053/01228420.v16.n2.2019.9130. http://repositorio.uptc.edu.co/handle/001/2838 2539-0899 http://repositorio.uptc.edu.co/handle/001/2838 10.19053/01228420.v16.n2.2019.9130 eng Agrahar, D., & Jha, K. (2010). Effect of Drying of Nutritional and Functional Quality and Electrophoretic Pattern of Soyflour from Sprouted Soybean (Glycine max). Journal of Food Science and Technology, 47(5), 482-487. http://doi.org/10.1007/s13197-010-0082-5. AOAC (2011). Official Methods of Analysis of AOAC International (18th ed.). Maryland, USA: AOAC International. Bahadori, Z., Esmaielzadeh, L., Karimi, M. A., Seidavi, A., Olivares, J., Rojas, S., Salem, A. Z., & López, S. (2017). The Effect of Earthworm (Eisenia foetida) Meal with Vermi-Humus on Growth Performance, Hematology, Immunity, Intestinal Microbiota, Carcass Characteristics, and Meat Quality of Broiler Chickens. Livestock Science, 202(8), 74-81. http://doi.org/10.1016/j.livsci.2017.05.010. Bahadori, Z., Esmailzadeh, L., & Torshizi, M. A. (2015). The Effect of Earthworm (Eisenia fetida) and Vermin Humus Meal in Diet on Broilers Chicken Efficiency and Carcass Components. Biological Forum, 7(1), 998-1005. Bonazzi, C., & Dumoulin, E. (2011). Quality Changes in Food Materials as Influenced by Drying Processes. In E. Tsotsas & A.S. Mujumdar (eds.), Modern Drying Technology. Product Quality and Formulation (pp. 1-20). Berlin, Germany: Wiley VCH. https://doi.org/10.1002/9783527631667.ch1. Botello, A. L., Cisneros, M., Viana, M. T., Valdivié, M., Ariza, E., Téllez, G. E., Solano, G., Rodríguez, Y., Gómez, I., Botello, A. R., Rodríguez, R., & Corría, K. P. (2011). Utilization of Proteinic Sugarcane Meal in the Feeding of Juvenile Red Tilapia. Cuban Journal of Agricultural Science, 45(4), 411-415. Botello, L. A., Viana, M. T., Corría, K. P., Marcos, O. O., Machado, R. T., Morán, M. C., Hurtado, G. K., Cedeño, T. D., López, C. K., López, B. J., Chacón, M. E., Zambrano, C. N., & Ramírez, R. J. (2017). Caracterización nutricional y costos del residual de tilapia (Oreochromis niloticus) presecado con harinas vegetales. Revista Electrónica de Veterinaria, 18(4), 1-8. Boulogne, S., Márquez, E., Zambrano, Y. E., Medina, A. L., & Cayot, P. (2008). Optimización de la operación de secado de la carne de lombriz (Eisenia andrei) para producir harina destinada al consumo animal. Ciencia e Ingeniería, 29(2), 91-96. Căpriţă, R., Căpriţă, A., & Julean, C. (2010). Biochemical Aspects of Non-Starch Polysaccharides. Scientific Papers Animal Science and Biotechnologies, 43(1), 368-374 Cayot, N., Cayot, P., Maroun, B. E., Laboure, H., Romero, A. B., Pernin, K., & Medina, A. L. (2009). Physico-chemical Characterisation of a Non-Conventional Food Protein Source from Earthworms and Sensory Impact in Arepas. International Journal of Food Science & Technology, 44(11), 2303-2313. https://doi.org/10.1111/j.1365-2621.2009.02074.x. Córdova, M. G., Anaya, A. M., Ovando, J. A., García, J. A., & Silvano, E. J. (2013). Efecto del proceso de secado de la lombriz roja californiana (Eisenia foetida) en sus características nutricionales. Quehacer Científico en Chiapas, 8(2), 44-50 Coulis, M., Bernard, L., Gérard, F., Hinsinger, P., Plassard, C., Villeneuve, M., & Blanchart, E. (2014). Endogeic Earthworms Modify Soil Phosphorus, Plant Growth and Interactions in a Legume–Cereal Intercrop. Plant and Soil, 379(1-2), 149-160. https://doi.org/10.1007/s11104-014-2046-4. Duodu, C. P., Boateng, A. D., Edziyie, R. E., Agbo, N. W., Boateng, O. G., Larsen, B. K., & Skov, P. V. (2018). Processing Techniques of Selected Oilseed By-Products of Potential Use in Animal Feed: Effects on Proximate Nutrient Composition, Amino Acid Profile and Antinutrients. Animal Nutrition, 4(4), 442-451. https://doi.org/10.1016/j.aninu.2018.05.007. Erbay, Z., & Hepbasli, A. (2014). Application of Conventional and Advanced Exergy Analyses to Evaluate the Performance of a Ground-Source Heat Pump (GSHP) Dryer Used in Food Drying. Energy Conversion and Management, 78(2), 499-507. https://doi.org/10.1016/j.enconman.2013.11.009. Fagbenro, O. (1994). Dried Fermented Fish Silage in Diets for Oreochromis niloticus. The Israeli Journal of Aquaculture Bamidgeh, 46(3), 140-147. Falcón, M. D., Barrón, J. M., Romero, A. L., & Domínguez, M. F. (2011). Efecto adverso en la calidad proteica de los alimentos de dietas con alto contenido de fibra dietaria. Revista Chilena de Nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300012 Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-Functional Application of Moringa oleifera Lam. in Nutrition and Animal Food Products: A Review. Food Research International, 106(4), 317-334. https://doi.org/10.1016/j.foodres.2017.12.079. García, M. D., Oruña, L., Domínguez, H., & Martínez, V. (2005). Evaluación de la calidad proteica de harina de lombriz (Eisenia foetida) en ratas en crecimiento. Revista Cubana de Ciencia Agrícola, 39(3), 333-338. Goddard, J. S., & Perret, J. S. (2005). Co-Drying Fish Silage for Use in Aquafeeds. Animal Feed Science and Technology, 118(3), 337-342. https://doi.org/10.1016/j.anifeedsci.2004.11.004. Gunya, B., Masika, P. J., Hugo, A., & Muchenje, V. (2016). Nutrient Composition and Fatty Acid Profiles of Oven-Dried and Freeze-Dried Earthworm Eisenia foetida. Journal of Food and Nutrition Research, 4(6), 343-348. https://doi.org/10.12691/jfnr-4-6-1. Gunya, B., Muchenje, V., & Masika, P. J. (2019). The Potential of Eisenia foetida as a Protein Source on the Growth Performance, Digestive Organs Size, Bone Strength and Carcass Characteristics of Broilers. The Journal of Applied Poultry Research, 0, 1–9. https://doi.org/10.3382/japr/pfy081. Guptaa, M., Shikhab, K. S., & Tewaria, S. K. (2014). Quality Evaluation of Vermicompost at Various Phases of Farm Waste Composting and During Storage. Advances in Bioresearch, 5(1), 56-63. https://doi.org/10.15515/abr.0976-4585.5.56-63. Ibáñez, I. A., Herrera, C. A., Velásquez, L. A., & Hebel, P. (1993). Nutritional and Toxicological Evaluation on Rats of Earthworm (Eisenia fetida) Meal as Protein Source for Animal Feed. Animal Feed Science and Technology, 42(1-2), 165-172. https://doi.org/10.1016/0377-8401(93)90031-E. Jiménez, M. E., Coca, S. A., González, J. M., & Mateos, G. G. (2016). Inclusion of Insoluble Fiber Sources in Mash or Pellet Diets for Young Broilers. 1. Effects on Growth Performance and Water Intake. Poultry Science, 95(1), 41-52. https://doi.org/10.3382/ps/pev309. Kızılkaya, R., & Türkay, F. Ş. (2014). Vermicomposting of Anaerobically Digested Sewage Sludge with Hazelnut Husk and Cow Manure by Earthworm Eisenia foetida. Compost Science & Utilization, 22(2), 68-82. https://doi.org/10.1080/1065657X.2014.895454 Kuforiji, O. O., Agunbiade, J. A., Awojobi, H. A., & Eniolorunda, O. O. (2016). Feeding Value of Cassava Products Supplemented with Earthworm Meal in Diets of Growing Rabbits. Tropical Agriculture, 93(3), 197-208. Langer, S., Bakhtiyar, Y., & Lakhnotra, R. (2011). Replacement of Fishmeal with Locally Available Ingredients in Diet Composition of Macrobrachium dayanum. African Journal of Agricultural Research, 6(5), 1080-1084. Maková, J., Javoreková, S., Elbl, J., Medo, J., Hricáková, N., & Kováčik, P. (2019). Impact of Vermicompost on Biological Indicators of the Quality of Soil under Maize in a Greenhouse Experiment. Journal of Elementology, 24(1), 319-330. https://doi.org/10.5601/jelem.2017.22.4.1548 Martínez, Y., Carrión, Y., Rodríguez, R., Valdivié, M., Olmo, C., Betancur, C., & Liu, G. (2015). Growth Performance, Organ Weights and Some Blood Parameters in Replacement Laying Pullets Fed with Increasing Levels of Wheat Bran. Brazilian Journal of Poultry Science, 17(3), 347-354. http://doi.org/10.1590/1516-635x1703347-354. Martínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C. A., Re, W., & Yin, Y. L. (2017). The Role of Methionine on Metabolism, Oxidative Stress and Diseases. Amino Acids, 49(12), 2091-2098. https://doi.org///10.1007/s00726-017-2494-2. Mohanta, K. N., Subramanian, S., & Korikanthimath, V. S. (2016). Potential of Earthworm (Eisenia foetida) as Dietary Protein Source for Rohu (Labeo rohita) Advanced Fry. Cogent Food & Agriculture, 2(1), 1138594. https://doi.org/10.1080/23311932.2016.1138594. Morillo, M., Visbal, T., Altuve, D., Ovalles, F., & Medina, A. L. (2013). Valoración de dietas para alevines de Colossoma macropomum utilizando como fuentes proteicas harinas: de lombriz (Eisenia foetida), soya (Glycine max) y caraotas (Phaseolus vulgaris). Revista Chilena de Nutrición, 40(2), 147-154. https://doi.org/10.4067/S0717-75182013000200009 National Research Council -NRC- (1994). Nutrient Requirements of Poultry. (9th ed.). Washington: Academy Press. Ncobela, C. N., & Chimonyo, M. (2015). Potential of Using Non-Conventional Animal Protein Sources for Sustainable Intensification of Scavenging Village Chickens: A Review. Animal Feed Science and Technology, 208, 1-11. https://doi.org/10.1016/j.anifeedsci.2015.07.005 Olmo, C., Martínez, Y., León, E., Leyva, L., Nuñez, M., Rodríguez, R., Labrada, A., Iser, M., Betancur, C., Merlos M., & Liu, G. (2012). Effect of Mulberry Foliage (Morus alba) Meal on Growth Performance and Edible Portions in Hybrid Chickens. International Journal of Animal and Veterinary Advances, 4(4), 263-268. Ovalles, J., Medina, A., Márquez, E., & Rial, L. (2017). Efecto del proceso de secado de la lombriz de tierra (Eisenia andrei) sobre el perfil aminoacídico de la harina determinado por cromatografía. Saber, 29, 486-494. https://doi.org/10.4067/s0717-75182008000300008. Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143 Rezaeipour, V., Nejad, O. A., & Miri, H. Y. (2014). Growth Performance, Blood Metabolites and Jejunum Morphology of Broiler Chickens Fed Diets Containing Earthworm (Eisenia foetida) Meal as a Source of Protein. International Journal of Advanced Biological and Biomedical Research, 2(8), 2483-2494. Rojas, O. J., Vinyeta, E., & Stein, H. H. (2016). Effects of Pelleting, Extrusion, or Extrusion and Pelleting on Energy and Nutrient Digestibility in Diets Containing Different Levels of Fiber and Fed to Growing Pigs. Journal of Animal Science, 94(5), 1951-1960. https://doi.org/10.2527/jas2015-0137. Sánchez, Y. P., Betancur, H. C., Botello, A. L., Pérez, K. C., Ruiz, C. C., & Martínez, Y. A. (2019). Ensilability and Chemical Composition of Silages Made with Different Mixtures of Noni (Morinda citrifolia L.). Ciencia y Agricultura, 16(1), 3-16. https://doi.org/10.19053/01228420.v16.n1.2019.8802. Savón, L., Scull, I., & Martínez, M. (2007). Integral Foliage Meal for Poultry Feeding. Chemical Composition, Physical Properties and Phytochemical Screening. Cuban Journal of Agricultural Science, 41(2), 359-361. Sharma, K., & Garg, V. K. (2018). Comparative Analysis of Vermicompost Quality Produced from Rice Straw and Paper Waste Employing Earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708-715. https://doi.org/10.1016/j.biortech.2017.11.101. Singh, R., Srivastava, P., Singh, P., Upadhyay, S., & Raghubanshi, A. S. (2019). Human Overpopulation and Food Security: Challenges for the Agriculture Sustainability. In Khosrow-Pour. (ed.), Urban Agriculture and Food Systems: Breakthroughs in Research and Practice (pp. 439-467). Pennsylvania, United States: IGI Global. https://doi.org/10.4018/978-1-5225-8063-8.ch022. Smárason, B. Ö., Alriksson, B., & Jóhannsson, R. (2018). Safe and Sustainable Protein Sources from the Forest Industry–The Case of Fish Feed. Trends in Food Science & Technology, 84, 12-14. https://doi.org/10.1016/j.tifs.2018.03.005. Sogbesan, A. O., & Ugwumba, A. A. (2008). Nutritional Values of Some Non-Conventional Animal Protein Feedstuffs Used as Fishmeal Supplement in Aquaculture Practices in Nigeria. Turkish Journal of Fisheries and Aquatic Sciences, 8(1), 159-164. Szukl, P., Podkowaka, Z., Bocianowski, J., Krauklis, D., & Wilczewska, W. (2018). Chemical Composition and Nutritional Value of Maize Grains from Cultivars of Different Breeding and Seed Companies. Journal of Research and Applications in Agricultural Engineering, 63(4), 203-208. Tiroesele, B., & Moreki, J. C. (2012). Termites and Earthworms as Potential Alternative Sources of Protein for Poultry. International Journal for Agro Veterinary and Medical Sciences, 6, 368-76. https://doi.org/10.5455/ijavms.174. Valverde, D. M. (2010). Usos de la morera (Morus alba) en la alimentación del conejo. El rol de la fibra y la proteína en el tracto digestivo. Agronomía Mesoamericana, 21(2), 357-366. https://doi.org/10.15517/am.v21i2.4900. Vidotti, R. M., Carneiro, D. J., & Viegas, E. (2002). Growth Rate of Pacu, Piaractus mesopotamicus, Fingerlings Fed Diets Containing Co-Dried Fish Silage as Replacement of Fish Meal. Journal of Applied Aquaculture, 12(4), 77-88. https://doi.org/10.1300/J028v12n04_07. Vielma, R. R., Durán, J. F., León, L. A., & Medina, A. (2003). Valor nutritivo de la harina de lombriz (Eisenia foetida) como fuente de aminoácidos y su estimación cuantitativa mediante cromatografía en fase reversa (HPLC) y derivatización precolumna con o-ftalaldehído (OPA). Ars Pharmaceutica, 44(1), 43-58. Yang, F., Wang, L., Wang, G., Du, P., & Zhang, Y. (2015). Organic Matter and Nitrogen Distribution, and Functional Groups of Filter at Earthworm Packing Bed in Vermifiltration. Polish Journal of Environmental Studies, 24(1), 375-380. Zhenjun, S., Xianchun, L., Lihui, S., & Chunyang, S. (1997). Earthworm as a Potential Protein Resource. Ecology of Food and Nutrition, 36(2-4), 221-236. https://doi.org/10.1080/03670244.1997.9991517. Revista Ciencia y Agricultura;Volumen 16, número 2 (Mayo-Agosto 2019) Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/ciencia_agricultura/article/view/9130/7627
spellingShingle Harina de lombriz de tierra
Lombriz de tierra - Nutrición
Lombricultura - Aspectos nutricionales
Agrosavia
Corn meal
Earthworm
Protein source
Rice powder
Soy cake meal
Wheat bran
Pérez Corría, Kirenia
Botello León, Aroldo
Mauro Félix, Abril Karina
Rivera Pineda, Franklin
Viana, María Teresa
Cuello Pérez, Maribel
Botello Rodríguez, Arnaldo
Martínez Aguilar, Yordan
Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title_full Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title_fullStr Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title_full_unstemmed Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title_short Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed
title_sort chemical composition of earthworm eisenia foetida co dried with vegetable meals as an animal feed
topic Harina de lombriz de tierra
Lombriz de tierra - Nutrición
Lombricultura - Aspectos nutricionales
Agrosavia
Corn meal
Earthworm
Protein source
Rice powder
Soy cake meal
Wheat bran
url http://repositorio.uptc.edu.co/handle/001/2838
work_keys_str_mv AT perezcorriakirenia chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT botelloleonaroldo chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT maurofelixabrilkarina chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT riverapinedafranklin chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT vianamariateresa chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT cuelloperezmaribel chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT botellorodriguezarnaldo chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT martinezaguilaryordan chemicalcompositionofearthwormeiseniafoetidacodriedwithvegetablemealsasananimalfeed
AT perezcorriakirenia composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT botelloleonaroldo composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT maurofelixabrilkarina composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT riverapinedafranklin composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT vianamariateresa composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT cuelloperezmaribel composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT botellorodriguezarnaldo composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal
AT martinezaguilaryordan composicionquimicadelalombrizdetierraeiseniafoetidapresecadaconharinasvegetalescomoalimentoanimal