Interaction between biological and chemistry fungicides and tomato pollinators

1 recurso en línea (páginas 425-435).

Saved in:
Bibliographic Details
Main Authors: De Melo e Silva-Neto, Carlos, Ribeiro, Anna Clara Chaves, Gómes, Flaviana Lima, Neves, Jordana Guimarães, Campos de Melo, Aniela Pilar, Calil, Francine Neves, Abadia dos Reis, Nascimento, Franceschinelli, Edivani Villaron
Format: Artículo de revista
Language:eng
Published: Universidad Pedagógica y Tecnológica de Colombia 2019
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2919
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1801705882695761920
author De Melo e Silva-Neto, Carlos
Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
author_facet De Melo e Silva-Neto, Carlos
Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
author_sort De Melo e Silva-Neto, Carlos
collection DSpace
description 1 recurso en línea (páginas 425-435).
format Artículo de revista
id repositorio.uptc.edu.co-001-2919
institution Repositorio Institucional UPTC
language eng
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-29192023-05-08T20:15:51Z Interaction between biological and chemistry fungicides and tomato pollinators Interacción entre fungicidas biológicos y químicos con polinizadores de tomate De Melo e Silva-Neto, Carlos Ribeiro, Anna Clara Chaves Gómes, Flaviana Lima Neves, Jordana Guimarães Campos de Melo, Aniela Pilar Calil, Francine Neves Abadia dos Reis, Nascimento Franceschinelli, Edivani Villaron Relación insecto-planta Polen de abejas Plantas melíferas Agrosavia Bees Pollen load Bacillus subtilis Trifloxystrobin Tebuconazole Compatibility of agrochemicals 1 recurso en línea (páginas 425-435). El uso inapropiado de agroquímicos es perjudicial para las abejas que visitan los cultivos agrícolas, lo que reduce la producción por la afectación de la polinización y son pocos los estudios sobre este tema. El objetivo de este estudio fue verificar la incidencia de diferentes fungicidas sobre la visita de abejas en cultivos de tomate y sus efectos sobre la deposición de granos de polen en el estigma, número de semillas, masa y tamaño del fruto. Los experimentos consistieron en 10 tratamientos que fueron: (T1) tratamiento control sin agroquímicos; (T2 y T3) Bacillus subtilis en diferentes frecuencias de aplicación; (T4) hidróxido de cobre; (T5) B. subtilis e hidróxido de cobre; (T6) acibenzolar-S-metilo; (T7) trifloxistrobina+tebuconazol y B. subtilis; (T8) hidróxido de cobre + Mancozeb; (T9) propineb+(-trifloxistrobina+tebuconazol); (T10) trifloxistrobina+tebuconazol)+B. subtilis+hidróxido de cobre. Se determinó la presencia de la marca de polinización en la flor, la carga de polen en los estigmas, el número de semillas por fruto, y el tamaño y masa de los frutos en cada tratamiento. Posteriormente, se estimó la tasa de mortalidad de Melipona quadrifasciata expuesta a cuatro fungicidas (trifloxistrobina+tebuconazol, manganeso y zinc, hidróxido de cobre, Bacillus subtilis). La tasa de mortalidad de M. quadrifasciata en 24 horas de evaluación fue mayor en los tratamientos con hidróxido de cobre y trifloxistrobina+tebuconazol (75 y 50%, respectivamente). La tasa de mortalidad fue menor en los tratamientos con manganeso y zinc, Bacillus subtilis y el tratamiento de control. Los tratamientos con trifloxistrobina y tebuconazol redujeron la presencia de marcas de mordida y granos de polen en el estigma de las flores. Los frutos de los tratamientos control y con B. subtilis e hidróxido de cobre fueron más grandes y tuvieron mayor masa. Por lo tanto, un mayor número de aplicaciones de pesticidas en las plantas de tomate reducen las tasas de visitas de abejas en las flores y en consecuencia, la cantidad de granos de polen depositados en los estigmas afectando también la producción de los frutos. The use of agrochemicals is harmful to bees visiting agricultural crops, reducing production gains from pollination, but the effect of fungicides on these bees is not known. The objective of this study was to verify the effect of bee visitation influenced by different fungicides on the tomato crop and on the deposition of pollen grains on the stigma, number of seeds, mass and fruit size. The experiment was conducted with 10 treatments: (T1) control treatment, without application of agrochemicals; (T2 and T3) Bacillus subtilis in different application frequencies; (T4) copper hydroxide; (T5) B. subtilis and copper hydroxide; (T6) acibenzolar-S-methyl; (T7) (trifloxystrobin+tebuconazole) and B. subtilis; (T8) copper hydroxide+Mancozeb; (T9) propineb+(trifloxystrobin+ tebuconazole); (T10) (trifloxystrobin+tebuconazole)+B. subtilis+copper hydroxide. The presence of the pollination mark on the flower, the pollen load of the stigmas, the number of seeds per fruit, and the size and mass of the fruits were determined in each treatment. Subsequently, the mortality rate of Melipona quadrifasciata (Hymenoptera, Apidae) exposed to four fungicides (trifloxystrobin+tebuconazole; manganese and zinc; copper hydroxide; Bacillus subtilis) was estimated. The mortality rate of M. quadrifasciata over 24 h of evaluation was higher in the treatments with copper hydroxide and trifloxystrobin+tebuconazole (75 and 50%, respectively). The mortality rate was lower in the treatments with manganese and zinc and Bacillus subtilis and in the control treatment. The treatments with trifloxystrobin+tebuconazole reduced the presence of bite marks on the flowers and of pollen grains on the flower stigma. The fruits of the control treatments and treatments with B. subtilis and copper hydroxide were larger and had greater mass, as compared to other agrochemicals. Thus, a higher number of pesticide applications on the tomatoes reduced bee visitation rates to the flowers and, consequently, reduced the amount of pollen grains deposited on the stigmas, also reducing the fruit production. Bibliografía: páginas 434-435 2019-11-06T20:54:53Z 2019-11-06T20:54:53Z 2018-09-20 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Silva Neto, Carlos De Melo E y otros. (2018). Interaction between biological and chemistry fungicides and tomato pollinators. Revista Colombiana de Ciencias Hortícolas, 12(2), 425-435. DOI: http://doi.org/10.17584/rcch.2018v12i2.7690. http://repositorio.uptc.edu.co/handle/001/2919 2422-3719 2422-3719 http://repositorio.uptc.edu.co/handle/001/2919 10.17584/rcch.2018v12i2.7690 eng Artz, D.R. and T.L. Pitts-Singer. 2015. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata. PloS One 10, e0135688. Doi: 10.1371/journal. pone.0135688 Barbosa, W.F., G. Smagghe, and R.N.C. Guedes. 2015. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest. Manag. Sci. 71(8), 1049-1053. Doi: 10.1002/ ps.4025 Carvalho, S.M., G.A. Carvalho, C.F. Carvalho, J.S.S. Bueno- Filho, and A.P.M. Baptista. 2009. Toxicidade de acaricidas/ inseticidas empregados na citricultura para a abelha africanizada Apis mellifera L., 1758 (Hymenoptera: Apidae). Arq. Inst. Biol. 76(4), 597-606. Costa, L.M., T.C. Grella, R.A. Barbosa, O. Malaspina, and R.C.F. Nocelli. 2015. Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiol. 62(4), 578-582. Doi: 10.13102/sociobiology. v62i4.792 Dafni, A., E. Pacini, and M. Nepi. 2005. Pollen and stigma biology. pp 83-142. In: Dafni, A., P. Kevan, and B. Husband (eds.). Practical pollination biology. Ontario, Canada Degrandi-Hoffman, G., Y. Chen, E.W. Dejong, M.L. Chambers, and G. Hidalgo. 2015. Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J. Econ. Entomol. 251(6), 1-11. Doi: 10.1093/jee/tov251 Embrapa. 2006. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro, Brazil. Fletcher, M. and L. Barnett. 2003. Bee poisoning incidents in the United Kingdom. Bull. Insectol. 56, 141-145. Franceschinelli, E.V., M.A. Elias, L.L. Bergamini, C.M. Silva- Neto, and E.R. Sujii. 2017. Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. J. Ins. Cons. 21(4), 715-726. Doi: 10.1007/s10841-017-0015-y Freitas, B.M. and J.N. Pinheiro. 2010. Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia 14, 282-298. Doi: 10.4257/oeco.2010.1401.17 Gill, R.J. and N.E. Raine. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28(1), 1459- 1471. Doi: 10.1111/1365-2435.12292 Hopwood, J., M. Vaughan, M. Shepherd, D. Biddinger, E. Mader, S.H. Black, and C. Mazzacano. 2012. Are neonicotinoids killing bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action. Xerces Society for Intervertebrate Conservation, Portland, OR, USA. Jacob, C.R.O., H.M. Soares, S.M. Carvalho, R.C.F. Nocelli, and O. Malaspina. 2013. Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull. Environ. Contam. Toxicol. 90(1), 69-72. Doi: 10.1007/ s00128-012-0892-4 Johnson, R.M., L. DahlGren, B.D. Siegfried, and M.D. Ellis. 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PloS One 8, e54092. Doi: 10.1371/journal.pone.0054092 Lima, M.A.P., G.F. Martins, E.E. Oliveira, and R.N.C. Guedes. 2016. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J. Comp. Physiol. A. 202(9-10), 733-747. Doi: 10.1007/ s00359-016-1110-3 McFrederick, Q.S., G. Ulrich, R. Mueller, and R. James. 2014. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. Lond. B. Biol. Sci. 281(1779), 1-8. Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001a. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462-467. Doi: 10.1603/0022-0493-94.2.462 Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001b. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94(1), 172-179. Doi: 10.1603/0022-0493-94.1.172 Mussen, E.C.M., I. Julio, E. Lopez, and C.Y. Peng. 2004. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ. Entomol. 33(5), 1151-1154. Doi: 10.1603/0046-225X-33.5.1151 Ngugi, H.K., S. Dedej, K.S. Delaplane, A.T. Savelle, and H. Scherm. 2005. Effect of flowerapplied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol Control 33(1), 32-38. Doi: 10.1016/j.biocontrol.2005.01.002 Nunes-Silva, P., M. Hnrcir, L. Shipp, V.L. Imperatriz-Fonseca, and P.G. Kevan. 2013. The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: pollination and reward perception. J. Pollinat. Ecol. 11(5), 33-40. Park, H.H., J.J. Kim, K.H. Kim, and S.G. Lee. 2013. Dissemination of Bacillus subtilis by using bee-vectoring technology in cherry tomato greenhouses. Korean J. Appl. Entomol. 52(4), 357-364. Doi: 10.5656/ KSAE.2012.09.0.046 Peel, M.C., L.F. Brian, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4(2), 439-473. Doi: 10.5194/hessd-4-439-2007 Pettis, J.S., E.M. Lichtenberg, M. Andree, J. Stitzinger, and R. Rose. 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, e70182. Doi: 10.1371/journal.pone.0070182 Pignati, W.A., A.N.D.S. Lima, S.S.D. Lara, M.L.M. Correa, J.R. Barbosa, L.H.D.C. Leão, and M.G. Pignatti. 2017. Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Cien. Saude Colet. 22(10), 3281- 3293. Doi: 10.1590/1413-812320172210.17742017 Riedl, H., E. Johansen, L. Brewer, and J. Barbour. 2006. How to reduce bee poisoning from pesticides. Oregon State University; University of Idaho; Washington State University, Corvallis, OR, USA. Rocha, M.C.L.S.A. 2012. Efeitos dos agrotóxicos sobre as abelhas silvestres no Brasil: proposta metodológica de acompanhamento. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasilia, Brazil Rodrigues, C.G., A.P. Kruger, W.F. Barbosa, and R.N.C. Guedes. 2016. Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera). J. Econ. Entomol. 109(30), 1001-1008. Doi: 10.1093/jee/tow044 Sanchez-Bayo, F. and K. Goka. 2014. Pesticide residues and bees - a risk assessment. PLoS ONE 9, e94482. Doi: 10.1371/journal.pone.0094482 Santos, A.B. and F.S. Nascimento. 2011. Diversidade de visitantes florais e potenciais polinizadores de Solanum lycopersicum (Linnaeus) (Solanales: Solanaceae) em cultivos orgânicos e convencionais. Neotrop. Biol. Conserv. 6a(3), 162-169 Silva-Neto, C.M., F.G. Lima, B.B. Gonçalves, L.L. Bergamini, B.A. Bergamini, M.A.S. Elias, and E.V. Franceschinelli. 2013. Native bees pollinate tomato flowers and increase fruit production. J. Pollinat. Ecol. 11(6), 41-45. Silva-Neto, C.M., E.V. Franceschinelli, L.L. Bergamini, M.A.S. Elias, J.M. Morais, G.L. Moreira, B.A. and Bergamini. 2016. High species richness of native pollinators in brazilian tomato crops. Braz. J. Biol. 77(3), 506-513. Doi: 10.1590/1519-6984.17515 Siqueira, K.M.N. 2008. Estudo comparativo da polinização de Mangifera indica L. em cultivo convencional e orgânico na região do Vale do Submédio do São Francisco. Rev. Bras. Fruti. 30, 303-310. Doi: 10.1590/ S0100-29452008000200006 Solomon, M.G. and K.J.M. Hooker. 1989. Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28(4), 223-227. Doi: 10.1080/00218839.1989.11101188 Spadotto, C.A., M.A.F. Gomes, L.C. Luchini, and M.M. Andrea. 2004. Monitoramento de risco ambiental de agrotóxicos: princípio Thompson, H.M. 2003. Behavioural effects of pesticides in bees - their potential for use in risk assessment. Ecotoxicol. 12(1-4), 317-330. Doi: 10.1023/A:1022575315413 Tomé, H.V.V., W.F. Barbosa, A.S. Correa, L.M. Gontijo, G.F. Martins, and R.N.C Guedes. 2015. Reduced risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167(2), 186-196. Doi: 10.1111/aab.12217 Vale, F.X.R., C.A. Lopes, and M.A.R. Alvarenga. 2013. Doenças fúngicas, bacterianas e causadas por nematoides. pp. 275-326. In: Alvarenga, M.A.R. (ed.). Tomate. Produção em campo, casa de vegetação e hidroponia. Editora Universitária de Lavras, Lavras-MG, Brazil. Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 2 (Mayo-Agosto 2018) Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/7690/7105
spellingShingle Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
De Melo e Silva-Neto, Carlos
Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
Interaction between biological and chemistry fungicides and tomato pollinators
title Interaction between biological and chemistry fungicides and tomato pollinators
title_full Interaction between biological and chemistry fungicides and tomato pollinators
title_fullStr Interaction between biological and chemistry fungicides and tomato pollinators
title_full_unstemmed Interaction between biological and chemistry fungicides and tomato pollinators
title_short Interaction between biological and chemistry fungicides and tomato pollinators
title_sort interaction between biological and chemistry fungicides and tomato pollinators
topic Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
url http://repositorio.uptc.edu.co/handle/001/2919
work_keys_str_mv AT demeloesilvanetocarlos interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT ribeiroannaclarachaves interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT gomesflavianalima interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT nevesjordanaguimaraes interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT camposdemeloanielapilar interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT calilfrancineneves interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT abadiadosreisnascimento interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT franceschinelliedivanivillaron interactionbetweenbiologicalandchemistryfungicidesandtomatopollinators
AT demeloesilvanetocarlos interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT ribeiroannaclarachaves interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT gomesflavianalima interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT nevesjordanaguimaraes interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT camposdemeloanielapilar interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT calilfrancineneves interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT abadiadosreisnascimento interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate
AT franceschinelliedivanivillaron interaccionentrefungicidasbiologicosyquimicosconpolinizadoresdetomate