Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)

1 recurso en línea (páginas 293-307).

Bibliographic Details
Main Authors: Novoa Torres, María Alejandra, Miranda Lasprilla, Diego, Melgarejo Muñoz, Luz Marina
Format: Artículo de revista
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2019
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2932
_version_ 1801705860486922240
author Novoa Torres, María Alejandra
Miranda Lasprilla, Diego
Melgarejo Muñoz, Luz Marina
author_facet Novoa Torres, María Alejandra
Miranda Lasprilla, Diego
Melgarejo Muñoz, Luz Marina
author_sort Novoa Torres, María Alejandra
collection DSpace
description 1 recurso en línea (páginas 293-307).
format Artículo de revista
id repositorio.uptc.edu.co-001-2932
institution Repositorio Institucional UPTC
language spa
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-29322021-02-10T19:32:07Z Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass) Effect of deficiencies and excesses of phosphorus, potassium and boron on the physiology and growth of avocado (Persea americana, cv. Hass) plants Novoa Torres, María Alejandra Miranda Lasprilla, Diego Melgarejo Muñoz, Luz Marina Aguacate: Persea americana Aguacate - Cultivo Aguacate - Oligoelementos Agrosavia Nutrición mineral Area foliar Fluorescencia de la clorofila Transpiración Síntomas de deficiencia y exceso. Frutales Mineral nutrition Leaf area Chlorophyll fluorescence Transpiration Deficiency and excess symptoms Fruits 1 recurso en línea (páginas 293-307). In order to observe the effects of nutrients: potassium (K), boron (B) and phosphorus (P), on physiological and growth variables in avocado var. Hass, seven treatments and four repetitions with three dose levels were evaluated: (1) deficiency of the respective element: 50% or half of the complete fertilization, (2) complete or control treatment: 100%, and (3) excess of the respective element, 150% above the complete fertilization, arranged in a completely random design. The plants were grown in polyethylene bags with soil and cultivated under greenhouse conditions; weekly fertilization and irrigation were also carried out. The evaluated variables included leaf area (LA), number of leaves (NL), relative chlorophyll content (CC), maximum photochemical efficiency of PSII (Fv/Fm) and transpiration (E); the symptomatology of deficiencies and excesses were described in the leaves. The LA, NL and CC values were lower in relation to the control. Similarly, the Fv/Fm and E were lower compared to the control, suggesting probable stress caused by the treatments, presenting a greater proportion of P, followed by K and B. The visual signs of nutrient stress were observed more clearly in the plants subjected to deficiency than in those subjected to excess, consistent with what has been reported for this variety. Para conocer el efecto de los nutrientes minerales potasio (K), boro (B) y fósforo (P), sobre variables fisiológicas y de crecimiento en aguacate var. Hass, se evaluaron siete tratamientos y cuatro réplicas con tres niveles de dosis: (1) deficiencia del respectivo elemento: 50% de la fertilización completa, (2) completa o tratamiento control: 100% y (3) exceso con un 150% por encima de la fertilización completa, dispuestos en un diseño completamente aleatorio. Las plantas crecieron en bolsas de polietileno, con suelo, y bajo condiciones de invernadero. Se realizó fertilización y riego semanal. Las variables evaluadas fueron el área foliar (AF), número de hojas (NH), contenido relativo de clorofilas (CC), eficiencia máxima fotoquímica del fotosistema II (Fv/Fm) y transpiración (E), además se describió la sintomatología de deficiencias o excesos en hojas. Se encontró que los valores de AF, NH y CC fueron menores en relación con el control. De igual forma, Fv/Fm y la E fueron menores con respecto al control, sugiriendo probable estrés ocasionado por los tratamientos; presentándose en mayor proporción para P, seguido de K y B. Los signos visuales de estrés nutricional se observaron de forma más clara en las plantas sometidas a deficiencia que en aquellas sometidas a exceso, siendo acorde a lo reportado para esta variedad. Bibliografía y webgrafía: páginas 305-307 2019-11-07T16:44:03Z 2019-11-07T16:44:03Z 2018-05-01 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 Novoa Torres, M. A., Miranda Lasprilla, D. & Melgarejo Muñoz, L.M. (2018). Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass). Revista Colombiana de Ciencias Hortícolas, 12(2), 293-307. DOI: http://doi.org/10.17584/rcch.2018v12i2.8092. http://repositorio.uptc.edu.co/handle/001/2932 2422-3719 http://repositorio.uptc.edu.co/handle/001/2932 10.17584/rcch.2018v12i2.8092 spa Agronet. 2016. Aguacate Hass colombiano entra en la recta final para exportar a Estados Unidos. En: Agronet, https://www.minagricultura.gov.co/noticias/Paginas/ Aguacate-Hass-colombiano-entra-en-la-recta-final- para-exportar-a-Estados-Unidos.aspx; consultado: octubre de 2017. Bartoli, J. 2008. Manual técnico del cultivo de aguacate Hass (Persea americana L.). Centro de Comunicación Agrícola de la Fundación Hondureña de Investigación Agrícola (FHIA), Lima, Perú Behboudian, M. y D. Anderson. 1990. Effects of potassium deficiency on water relations and photosynthesis of the tomato plant. Plant Soil 127, 137-139. Doi: 10.1007/BF00010846 Ben-Gal, A. y U. Shani. 2003. Water use and yield of tomatoes under limited water and excess boron. Plant Soil 256, 179-186. Doi: 10.1023/A:1026229612263 Bernal, J. y C. Díaz. 2005. Tecnología para el cultivo del Aguacate. Manual Técnico No. 5. Colombia: Centro de Investigación La Selva, Corporación Colombiana de Investigación Agropecuaria (Corpoica), Rionegro, Antioquia. Dell, B. y L. Huang. 1997. Physiological response of plants to low boron. Plant Soil 193, 103-120. Doi: 10.1023/A:1004264009230 Fairhurst, T. 1999. Nutrient use efficieny in oil palm: measurement and management. The Planter 75, 173-177. FAO. 2016. FAOSTAT statistics database. En: http://www. fao.org/statistics/es/; consultado: octubre de 2017. Farhat, N., M. Rabhi, H. Falleh, K. Lengliz, A. Smaoui, C. Abdelly y M. Lachaal. 2013. Interactive effects of excessive potassium and Mg deficiency on safflower. Acta Physiol. Plant 35, 2727-2745. Doi: 10.1007/ s11738-013-1306-x Gimeno, V., L. Simón, M. Nieves, V. Martínez y J. Camara. 2012. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 26, 1513- 1526. Doi: 10.1007/s00468-012-0724-5 Guerfel, M., O. Baccouri, D. Boujnah, W. Chaibi y M. Zarrouk. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europea L.) cultivars. Sci. Hortic. 119, 257-263. Doi: 10.1016/j. scienta.2008.08.006 He, G., J. Zhang, X. Hu y J. Wu. 2011. Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiol. Pla Hernández, R. y R. Pacheco. 1986. Caracterización de síntomas visuales de deficiencias nutricionales en cardamomo (Elettaria cardamomum). Agron. Costarr. 10(1/2), 13-27. IPNI (International Plant Nutrition Institute). 2010. Funciones del fosforo en las plantas. Informaciones Agronomicas No. 36. IPNI, Peachtree Corners, GA, USA. ICA (Instituto Colombiano Agropecuario). 2012. Manejo fitosanitario del cultivo del aguacate Hass (Persea americana Mill): medidas para la temporada invernal. Bogotá, Colombia. Jiménez, S., O. Alvarado y H. Balaguera. 2015. Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Rev. Colomb. Cienc. Hortic. 9(1), 149- 160. Doi: 10.17584/rcch.2015v9i1.3753 Jordan, L. y S. Pellerin. 2004. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265, 75-92. Doi: 10.1007/ s11104-005-0695-z Kass, D. 1998. Fertilidad de suelos. Ed. Universidad Estatal a Distancia. San José, Costa Rica. Kitajima, M. y W. Butler. 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta 376, 105-115. Doi: 10.1016/0005-2728(75)90209-1 Knypl, J. y A. Rennert. 1970. Stimulation of growth and chlorophyll synthesis in detached cotyledons of cucumber by potassium. Z. Pflanzenphysiol. 62, 97-107. Laing, W., D. Greer, O. Sun, P. Beets, A. Lowe y T. Payn. 2000. Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol. 146, 47-59. Doi: 10.1046/j.1469-8137.2000.00616.x Ling, L., L. Peng, L. Cao, C. Jiang, C. Chun, G. Zhang y Z. Wang. 2009. Effect of magnesium deficiency on photosynthesis characteristic of Beibei 447 Jinchen orange. J. Fruit Sci. 26, 275-280. Maldonado, R., M. Álvarez, G. Almaguer, A. Barrientos y R. García. 2013. Estándares nutrimentales para aguacatero “Hass”. Rev. Chapingo Ser. Hortic. 13(1), 103-108. Mejía, A. 2010. Cadena Productiva del Aguacate en Colombia. Consejo Nacional del Aguacate. pp. 5-30. En: Memorias, II Encuentro de la Cadena Productiva del Aguacate. Corporción Antioqueña del Aguacate, Ríonegro, Colombia. Mouhtaridou, G., T. Sotiropoulos, K. Dimassi y I. Therios. 2004. Effects of boron on growth, and chlorophyll and mineral contents of shoots. Biol. Plant. 48(4), 617-619. Doi: 10.1023/B:BIOP.0000047169.13304.67 Mukhopadhyay, M., P. Ghosh y T. Mondal. 2013. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets. Russ. J. Plant Physiol. 60(5), 633-639. Doi: 10.1134/S1021443713030096 Navarro, S. y G. Navarro. 2000. Química agrícola. Ed. Mundi- Prensa, Madrid, España. Navarro, S. y G. Navarro. 2014. Fertilizantes: química y acción. Ed. Mundi-Prensa, Madrid, España Okanenko, A. y B. Berstein. 1969. Potassium, photosynthesis and phosphate metabolism in sugar-beet. Naukova Dumka, Kiev, Ucracia. Olivia, M., N. de Barros y M. de Mouza. 1995. Muerte apical en eucalipto y manejo nutritivo de plantaciones forestales: aspectos fisiológicos del problema. Bosque 16(1), 77-86. Doi: 10.4206/bosque.1995.v16n1-08 Papadakis, I., N. Dimassi, A. Bosabalidis, L. Therios, A. Patakas y A. Giannakoula. 2004. Boron toxicity in Clementine mandarin plants on two rootstocks. Plant Sci. 166, 539-547. Doi: 10.1016/j.plantsci.2003.10.027 Percival, G. 2004. Evaluation of physiological tests as predictors of young tree establishment and growth. J. Arboric. 30(2), 80-92. Pillimue, G., N. Barrera y S. de Cantillo. 1998. Determinación de deficiencias de elementos mayores en plantas de tomate de árbol. Acta Agron. 48(3/4), 62-67. Quintana, W., E. Pinzón y D. Torres. 2017. Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv. ICA Cerinza. Rev. UDCA Act. & Div. Cient. 20(1), 51-59. Qu, C., X. Gong, C. Liu, M. Hong, L. Wang y F. Hong. 2012. Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol. Trace Elem. Res. 146, 94-100. Doi: 10.1007/ s12011-011-9218-3 Retamales, J. 2005. Fisiología y manejo de la nutrición de boro, potasio y calcio en pomáceas. Rev. Unifrut 15, 10-20. Ríos, D. y R. Tafur. 2003. Variedades de aguacate para el trópico: caso Colombia. pp. 143-147. En: Actas, V Congreso Mundial del Aguacate. Granada, Málaga, España. Roosta, H., A. Estaji y F. Niknam. 2017. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 55(10), 1-10. Saeed, M., M. Ashraf, M. Shahbaz y A. Aisha. 2009. Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) foliar applied different potassium salts. J. Plant Nutr. Soil Sci. 172(6), 884-893. Doi: 10.1002/ jpln.200900102 Salazar, S., L. Cossio y I. González. 2009. La fertilización de sitio específico mejoró la productividad del aguacate ‘Hass’ en huertos sin riego. Agric. Téc. Mex. 35(4), 439-448. Salazar-García, S. 2002. Nutrición del aguacate, principios y aplicaciones. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); Instituto de la Potasa y el Fósforo (INPOFOS), Querétaro, México Salazar, S. y I. Lazcano. 2003. Site-specific fertilization increased yield and fruit size in ‘hass’ avocado. Better Crops Int. 17(1), 13-15. Salas, R. 2002. Herramientas de diagnóstico para definir recomendaciones de fertilización foliar. Centro de Investigaciones Agronómicas, San José, Costa Rica. Shani, U., L. Dudley y R. Hanks. 1992. Model of boron movement in soils. Soil Sci. Soc Am. J. 56(5),1365-1370. Doi: 10.2136/sssaj1992.03615995005600050006x Sharma, P. y T. Ramchandra. 1990. Water relations and photosynthesis in mustard plants subjected to boron deficiency. Indian J. Plant Physiol. 33, 150-154 Sierra, C. 2003. Fertilización de cultivos y frutales en la zona norte. Boletin INIA No. 97. Instituto de Investigaciones Agropecuarias, La Serena, Chile. Sindoni, M., J. Zamora y R. Ramírez. 1994. Síntomas de deficiencia de boro y producción de materia seca en ajonjolí. Agron. Trop. 44(1), 135-150. Singh, S., G. Badgujar y V. Reddy. 2013. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J. Plant Physiol. 170, 801-813. Doi: 10.1016/j.jplph.2013.01.001 Singh, S. y V. Reddy. 2015. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. J. Photochem. Photobiol. B: Biology 151, 276-284. Doi: 10.1016/j.jphotobiol.2015.08.021 Singh. S., V. Reddy, D. Fleisher y D. Timlin. 2017. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2..Photosynthetica 55(3), 421-433. Doi: 10.1007/s11099-016-0657-0 Taiz, L. y E. Zeiger. 2010. Plant physiology. 5a ed. Sinauer Associates, Sunderland, MA, USA Tang, Z., J. Zhang, M. Wei, X. Chen, Z. Liu, H. Li e Y. Ding. 2015. Physiological response to potassium deficiency in three sweet potato (Ipomoea batatas [L.] Lam.) genotypes differing in potassium utilization efficiency. Acta Physiol. Plant. 37(184), 1-10. Doi: 10.1007/ s11738-015-1901-0 Veronica, N., D. Subrahamanyam, T. Vishnu, P. Yugandhar, V. Bhadana, V. Padma, G. Jayasree y S. Voleti. 2017. Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55(2), 285-293. Doi: 10.1007/s11099-016-0640-4 Wild, A. y J. Jones. 1992. Nutrición mineral de las plantas cultivadas. pp. 73-119. En: Wild, A. (ed.). Condiciones del suelo y desarrollo de las plantas según Russel. Ed. Mundi-Prensa, Madrid, España. Yabrudy, J. 2012. El aguacate en Colombia: Estudio de caso de los Montes de María, en el Caribe colombiano. Documentos de Trabajo sobre Economía Regional y Urbana 171. Banco de la República, Bogotá, Colombia Yuan, H., J. Yanyan, A. Muhammad, C. Chen, L. Li, L. Zhen, K. Qiusheng, C. Fei y B. Zhilong. 2016. Improving magnesium uptake, photosynthesis and antioxidant enzyme activities of watermelon by grafting onto pumpkin rootstock under low magnesium. Plant Soil 409, 229-246. Doi: 10.1007/s11104-016-2965-3 Zhao, D., D. Oosterhuis y C. Bednarz. 2001. Influence of potassium deficiency on photosyntesis, chorophylll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39(1), 103-109. Doi: 10.1023/A:1012404204910 Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 2 (Mayo-Agosto 2018) Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/8092/7102
spellingShingle Aguacate: Persea americana
Aguacate - Cultivo
Aguacate - Oligoelementos
Agrosavia
Nutrición mineral
Area foliar
Fluorescencia de la clorofila
Transpiración
Síntomas de deficiencia y exceso.
Frutales
Mineral nutrition
Leaf area
Chlorophyll fluorescence
Transpiration
Deficiency and excess symptoms
Fruits
Novoa Torres, María Alejandra
Miranda Lasprilla, Diego
Melgarejo Muñoz, Luz Marina
Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title_full Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title_fullStr Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title_full_unstemmed Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title_short Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass)
title_sort efecto de las deficiencias y excesos de fosforo potasio y boro en la fisiologia y el crecimiento de plantas de aguacate persea americana cv hass
topic Aguacate: Persea americana
Aguacate - Cultivo
Aguacate - Oligoelementos
Agrosavia
Nutrición mineral
Area foliar
Fluorescencia de la clorofila
Transpiración
Síntomas de deficiencia y exceso.
Frutales
Mineral nutrition
Leaf area
Chlorophyll fluorescence
Transpiration
Deficiency and excess symptoms
Fruits
url http://repositorio.uptc.edu.co/handle/001/2932
work_keys_str_mv AT novoatorresmariaalejandra efectodelasdeficienciasyexcesosdefosforopotasioyboroenlafisiologiayelcrecimientodeplantasdeaguacateperseaamericanacvhass
AT mirandalasprilladiego efectodelasdeficienciasyexcesosdefosforopotasioyboroenlafisiologiayelcrecimientodeplantasdeaguacateperseaamericanacvhass
AT melgarejomunozluzmarina efectodelasdeficienciasyexcesosdefosforopotasioyboroenlafisiologiayelcrecimientodeplantasdeaguacateperseaamericanacvhass
AT novoatorresmariaalejandra effectofdeficienciesandexcessesofphosphoruspotassiumandborononthephysiologyandgrowthofavocadoperseaamericanacvhassplants
AT mirandalasprilladiego effectofdeficienciesandexcessesofphosphoruspotassiumandborononthephysiologyandgrowthofavocadoperseaamericanacvhassplants
AT melgarejomunozluzmarina effectofdeficienciesandexcessesofphosphoruspotassiumandborononthephysiologyandgrowthofavocadoperseaamericanacvhassplants