Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia

1 recurso en línea (73 páginas) : figuras, tablas.

Saved in:
Bibliographic Details
Main Author: Gómez Sierra, Luis Alberto
Other Authors: Almanza Merchán, Pedro José
Format: Trabajo de grado - Maestría
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2019
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/2966
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1801705882726170624
author Gómez Sierra, Luis Alberto
author2 Almanza Merchán, Pedro José
author_facet Almanza Merchán, Pedro José
Gómez Sierra, Luis Alberto
author_sort Gómez Sierra, Luis Alberto
collection DSpace
description 1 recurso en línea (73 páginas) : figuras, tablas.
format Trabajo de grado - Maestría
id repositorio.uptc.edu.co-001-2966
institution Repositorio Institucional UPTC
language spa
publishDate 2019
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-29662022-03-02T16:03:28Z Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia Gómez Sierra, Luis Alberto Almanza Merchán, Pedro José Irradiación UV-B Fisiología vegetal Radiación solar - Efectos fisiológicos Radiación solar Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Altitud Antioxidante Pigmentos Luz 1 recurso en línea (73 páginas) : figuras, tablas. En la manzana roja, la coloración de la piel y las características fisicoquímicas, son factores importantes que determinan la calidad de los frutos; estos parámetros tienen un control de orden genético pero influenciado por condiciones ambientales en etapa de maduración de frutos. El color rojo está ligado a la biosíntesis de antocianinas, que son un grupo de pigmentos de color rojo, hidrosolubles, producto del metabolismo secundario mediado por luz UV, Y ampliamente distribuidos en el reino vegetal. En el presente estudio se determinó el IUV, se cuantifico antocianinas totales y se analizaron SST en frutos maduros de manzana cv “ANNA” cultivados en diferentes altitudes en localidades de Boyacá: Soracá a 2820 m.s.n.m, Tuta a 2640m.s.n.m y Nuevo Colon a 2450 m.s.n.m. Los resultados mostraron que en la localidad a mayor altitud (Soracá), el valor promedio del IUV fue mayor (14.9) y la acumulación de antocianinas totales igualmente fue el más alto (25.4 mg/100g). Se ha encontrado una correlaciòn positiva entre la intensidad de la radiación UV, altitud y concentración de antocianinas totales, mientras que para los SST no se encontraron diferencias significativas. Bibliografía y webgrafía: páginas 61-70 Maestría Magíster en Ciencias Biológicas 2019-12-09T22:26:50Z 2019-12-09T22:26:50Z 2019 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Gómez Sierra, L. A. (2019). Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2966 http://repositorio.uptc.edu.co/handle/001/2966 spa Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., and Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J. Plant Physiol. 168, 204–212 Aguilera-Otíz, M., del Carmen Reza-Vargas, M., Chew-Madinaveita, R. G., & Meza-Velázquez, J. A. (2011). Propiedades funcionales de las antocianinas. Biotecnia, 13(2), 16-22. Agustí, M. 2000. Fruticultura. : E libro, ProQuest ebrary. Web. 4 May 2016 Andersen, P. C. (2019). Low-Chill Apple Cultivars for North Florida and North, (May), 1–8. Appelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic engineering, 48, 218–232. doi:10.1016/j.ymben.2018.06.004 Arakawa, O. (1993). Effect of ultraviolet light on anthocyanin synthesis in lightcolored sweet cherry, cv. Sato Nishiki. J. Jpn. Soc. Hortic. Sci. 62, 543–546. Doi: 10.2 ,R.(1985).Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiol. Plant. 64, 323–327. Doi: 10.1111/j.1399-3054.1985.tb03347.x Ávalos, G., E. & Pérez, C. (2009). Metabolismo secundario de plantas Reduca (Biología). Serie Fisiología Vegetal. 2 (3): 119-145 Departamento de Biología Vegetal I (Fisiología Vegetal). Facultad de Biología. Universidad Complutense. Madrid. Angelini, R. (2008). Il melo. Coltura & cultura. Botánica, historia e arte, alimentazione, paessaggio, coltivazione, ricerca, utillizzazione, mondo e mercato. Italia. 2-25pp. Ballén, J. B., & Mogollón, J. F. P. (2007). Radiación ultravioleta. Ciencia y Tecnología para la Salud Visual y Ocular, (9), 97-104. Bai, S., Saito, T., Honda, C., Hatsuyama, Y., Ito, A., & Moriguchi, T. (2014). An apple B-box protein, MdCOL11, is involved in UV-B- and temperatureinduced anthocyanin biosynthesis. Planta, (October), 1051–1062. http://doi.org/10.1007/s00425-014-2129-8 Bais, A. F., , Lucas, R. M., , Bornman, J. F., , Williamson, C. E., , Sulzberger, B., , Austin, A. T., , … Heikkilä, A. M., (2018). Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 17(2), 127–179. doi:10.1039/c7pp90043k Jaakola L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18:477–83 Jansen, M. A. K., Gaba, V., and Greenberg, B. M. (1998). Higher plants and UVB radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 3, 131–135. doi: 10.1016/S1360-1385(98)01215-1 Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, et al. (2001). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188–99. Kadomura-Ishikawa, Y., Miyawaki, K., Noji, S., and Takahashi, A. (2013). Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria×ananassafruits.J.PlantRes.126,847–857.doi:10.1007/s10265- 0130582-2 Kamiloglu, S., Capanoglu, E., Grootaert, C., & Van Camp, J. (2015). Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. International Journal of Molecular Sciences, 16(9), 21555–21574. http://doi.org/10.3390/ijms160921555. Kataoka, I., Beppu, K., Sugiyama, A., and Taira, T. (1996). Enhancement of coloration of “Satoh-ni-shiki” sweet cherry fruit by postharvest irradiation with ultraviolet radiation. Environ. Control Biol. 34, 313–319. doi: 10.2525/ecb1963.34.313 Kim, S. A., Ahn, S. Y., Han, H. H., Son, I. C., & Yun, H. K. (2015). Expression of Genes Affecting Skin Coloration and Sugar Accumulation in Apple Fruits at Ripening Stages in High Temperatures. World Journal of Engineering and Technology, 3(03),7 Koes, R., Verweij, W., and Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10, 236–242. doi: 10.1016/j.tplants.2005.03.002 Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., et al. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. J. Plant Physiol. 171, 823–829. doi: 10.1016/j.plph.2014.01.001 Krga, I., Monfoulet, L., Konic-ristic, A., Mercier, S., Glibetic, M., Morand, C., & Milenkovic, D. (2016). Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNF a -activated endothelial cells at physiologically. Archives of Biochemistry and Biophysics, 1–9. http://doi.org/10.1016/j.abb.2016.02.006 Ma, C., Liang, B., Chang, B., Liu, L., Yan, J., Yang, Y., & Zhao, Z. (2018). Transcriptome Profiling Reveals Transcriptional Regulation by DNA Methyltransferase Inhibitor 5-Aza-2'-Deoxycytidine Enhancing Red Pigmentation in Bagged "Granny Smith" Apples (Malus domestica). International journal of molecular sciences, 19(10), 3133. doi:10.3390/ijms19103133 Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K., and Fernie, A. R. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 67, 354–369. Kytridis VP, Manetas Y. (2006). Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J Exp Bot. 57:2203–10. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol. 57(1):405–30. Liu, Y., Che, F., Wang, L., Meng, R., Zhang, X., & Zhao, Z. (2013). Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules, 18(2), 1549–1563. http://doi.org/10.3390/molecules18021549 Li, G., Zhao, J., Qin, B., Yin, Y., An, W., Mu, Z., & Cao, Y. (2019). ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants, 1–13. Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ. (2012). MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol. 160:1011–22 Li, W. F., Mao, J., Yang, S. J., Guo, Z. G., Ma, Z. H., Dawuda, M. M., … Chen, B. H. (2018). Anthocyanin accumulation correlates with hormones in the fruit skin of 'Red Delicious' and its four generation bud sport mutants. BMC plant biology, 18(1), 363. doi:10.1186/s12870-018-1595-8 Liobikas, J., Skemiene, K., Trumbeckaite, S., & Borutaite, V. (2016). Anthocyanins in cardioprotection: a path through mitochondria. Pharmacological Research. http://doi.org/10.1016/j.phrs.2016.03.036 López, L., Carbone, F., Bianco, L., Giuliano, G., Facella, P., and Perrotta, G. (2012). Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. Plant Cell Environ. 35, 994–1012. doi: 10.1111/j.1365- 3040.2011.02467.x Ma, C., Liang, B., Chang, B., Yan, J., Liu, L., Wang, Y., … Zhao, Z. (2019). Transcriptome profiling of anthocyanin biosynthesis in the peel of 'Granny Smith' apples (Malus domestica) after bag removal. BMC genomics, 20(1), 353. doi:10.1186/s12864-019-5730-1 Malacarne, G., Costantini, L., Coller, E., Battilana, J., Velasco, R., Vrhovsek, U., … Moser, C. (2015). Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. Journal of Experimental Botany, 66(15), 4441–4453. http://doi.org/10.1093/jxb/erv243 Ma, C., Jing, C., Chang, B., Yan, J., Liang, B., Liu, L., … Zhao, Z. (2018). The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. BMC plant biology, 18(1), 108. doi:10.1186/s12870-018-1320-7 Masci, A., Coccia, A., Lendaro, E., Mosca, L., Paolicelli, P., & Cesa, S. (2016). Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 202, 59–69. http://doi.org/10.1016/j.foodchem.2016.01.106 Möglich, A., Yang, X., Ayers, R. A., and Moffat, K. (2010). Structure and function of plant photoreceptors.Annu.Rev.PlantBiol.61,21– 47.doi:10.1146/annurevarplant-042809-112259 Moreno-Pérez, E. D. C., Martínez-Damián, M. T., Reyes-López, D., Pérez- Mercado, C. A., Peña-Lomelí, A., & Espinosa-Robles, P. (2006). Intensidad de color y contenido de antocianinas en chile guajillo Capsicum annuum L.Revista chapingo. Serie horticultura, 12(001), 135-140. Onik, J. C., Xie, Y., Duan, Y., Hu, X., Wang, Z., & Lin, Q. (2019). UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage. PloS one, 14(4), e0215472. doi:10.1371/journal.pone.0215472 Peng, T., Saito, T., Honda, C., Ban, Y., Kondo, S., Liu, J. H., et al. (2013). Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiol. Plant. 148, 432–444. doi: 10.1111/ppl.12002 Petri, J. L., Hawerroth, F. J., Leite, G. B., Couto, M., & Francescatto, P. (2012). Apple phenology in subtropical climate conditions. Phenology and Climate Change, 195–216. Retrieved from Available from: http://www.intechopen.com/books/phenology-and-climate-change/applephenology- in-subtropical-climate-conditions Qian, M., Zhang, D., Yue, X., Wang, S., Li, X., and Teng, Y. (2013). Analysis of different pigmentation patterns in “Mantianhong” (Pyrus pyrifolia Nakai) and “Cascade” (Pyrus communis L.) under bagging treatment and postharvest UV-B/visible irradiation conditions. Sci. Hortic. 151, 75–82. doi: 10.1016/j.scienta.2012.12.020 Rafique MZ, Carvalho E, Stracke R, Palmieri L, Herrera L, Feller A, et al.(2016) Nonsense mutation inside anthocyanidin synthase gene controls pigmentation in yellow raspberry (Rubus idaeus L.). Front Plant Sci. 7:1892–904 Taiz, L. & Blac, j. (2006). Fisiología vegetal. Volumen 2. 240pp. Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106. doi: 10.1126/science.1200660 Rivas M, Rojas E, Cortes J, Madronish S 2004. Aumentos de la irradiancia solar ultravioleta debido al efecto altitudinal. Memorias del XIV simposio chileno de física, Antofagasta, Noviembre del 2004 Rivas., E, E. R., & Madronich, S. (2008). Solar Ultraviolet Index Increase With Altitude. Ingeniare. Revista Chilena de Ingeniería, 16(58), 383–388. http://doi.org/10.4067/S0718-33052008000200013 Sgherri, C., Scattino, C., Pinzino, C., Tonutti, P., & Ranieri, a. M. (2015). Ultraviolet-B radiation applied to detached peach fruit: A study of free radical generation by EPR spin trapping. Plant Physiology and Biochemistry, 96, 124–131. http://doi.org/10.1016/j.plaphy.2015.07.031 Saldívar Iglesias, P. (2017). Cultivo del Manzano (Malus domestica). Sansavini, S., & Ranalli, P. 2012. Manuale di ortofrutticoltura:Innovazione tecnologiche e prospettive di mercato. Edagricole. Ministero delle politiche agricole Alimentari e forestali. Santacruz Cifuentes, L. A. (2011). Análisis químico de antocianinas en frutos silvestres colombianos (Doctoral dissertation, Universidad Nacional de Colombia). Smith, J. L., Burritt, D. J., and Bannister, P. (2000). Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Ann. Bot. 86, 1057–1063. doi: 10.1006/anbo.2000.1270 Sun, Y., Qian, M., Wu, R., Niu, Q., Teng, Y., and Zhang, D. (2014). Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Tec. 91, 64–71. doi: 10.1016/j.postharvbio.2013.12.015 Takos, A. M., et al. (2006) “Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples.” Plant Physiology, vol. 142, no. 3, pp. 1216–32, doi:10.1104/pp.106.088104 Takahashi, A., Takeda, K., & Ohnishi, T. (1991). Light-Induced Anthocyanin Reduces the Extent of Damage to DNA in UV-Irradiated Centaurea cyanus Cells in Culture, 32(4), 541–547. Taylor, C., Wallace, M., Monica. (2014). Anthocyanins in Health and Disease pp. 2-3 Tian, J., Zhang, J., Han, Z. Y., Song, T. T., Li, J. Y., Wang, Y. R., & Yao, Y. C. (2017). McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple. Scientific reports, 7, 43715. doi:10.1038/srep43715 Trejo-Gonzalez, A., & Soto-Valdez, H. (1991). Partial characterization of polyphenoloxidase extracted fromAnna'apple. Journal of the American Society for Horticultural Science, 116(4), 672-675. Turunen M. & Latola K. (2005) UV-B radiation and acclimation in timberline plants. Environmental Pollution 137, 390– 403 Van den Ende W & El-Esawe SK.2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ Exp Bot.108:4–13. Van De Staaij, J., De Bakker, N. V., Oosthoek, A., Broekman, R., Van Beem, A., Stroetenga, M., Aerts, R., and Rozema, J. (2002). Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UVB radiation. J. Photochem. Photobiol. B 66, 21–29 Victor, M., Moo, H., Mariela, I., Raciel, J., Estrada, L, Luis, C., Iván, A., Estrada, E,. Ortiz, D., Betancur, E., & Sauri, D. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Vidović, M., Morina, F., Milić, S., Albert, A., Zechmann, B., Tosti, T., … Jovanović, S. V. (2015). Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiology and Biochemistry, 93, 44–55. http://doi.org/10.1016/j.plaphy.2015.01.008 Vilela, A. E., Gonzalez-Paleo, L., & Ravetta, D. A. (2011). Metabolismo secundario de plantas leñosas de zonas áridas: Mecanismos de producción, funciones y posibilidades de aprovechamiento. Ecología Austral, 21(3), 317–327 Barnes P.W., Flint S.D. & Caldwell M.M. (1987) Photosynthesis damage and protective pigments in plants from a latitudinal arctic/alpine gradient exposed to supplemental UV-B radiation in the field. Arctic and Alpine Research 19, 21–27. Bohm B. (1998) Introduction of Flavonoids. Harwood Academic Publishers, Singapore Vimolmangkang S, Zheng DM, Han YP, Khan MA, Soria-Guerra RE, Korban SS. (2014). Transcriptome analysis of the exocarp of apple fruit identifies lightinduced genes involved in red color pigmentation. Gene;534:78–87 Wagner, J. R., Brunzelle, J. S., Forest, K. T., and Vierstra, R. D. (2005). A lightsensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331. doi: 10.1038/nature04118 Wei, Hairong, Xin Chen, Xiaojuan Zong, Huairui Shu, and Dongsheng Gao. 2015. “Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in the Red and Yellow Fruits of Sweet Cherry ( Prunus Avium L .).” 1–20. Wrolstad, R. E.; Heatherbell, D. A.(1974) Identification of anthocyanins and distribution of flavonoids in tamarillo fruit (Cyphomandra betaceae Cav. Sendt). J. Sci. Food. Agric, 25, 1221-1228. Yoshida K., Mori M., Kondo T.(2009). Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat. Product. Rep. 26:884–915 Yousuf B., Gul K., Wani A.A., Singh P. (2016. )Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit. Rev. Food Sci. Nutr. 56:2223–2230 Zhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M., and Peterson, T. (2003). A maize QTL for silk maysin levels contains duplicated Mybhomologous genes which jointly regulate flavone biosynthesis. Plant Mol. Biol. 52, 1–15. Zhang, X., Gou, M., Guo, C., Yang, H., & Liu, C.-J. (2015). Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly) phenols and Tolerance to Ultraviolet Radiation. Plant Physiology, 167(2), 337–350. Zhang HN, Li WC, Wang HC, Shi SY, Shu B, Liu LQ, Wei YZ, Xie JH. (2016). Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of Litch. Front Plant Sci. 7:963. Zoratti, L., Jaakola, L., Häggman, H., & Giongo, L. (2015). Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLoS ONE, 10(8), 1–17. http://doi.org/10.1371/journal.pone.0135935 Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H., and Moriguchi, T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48, 958–970. doi: 10.1093/pcp/pcm066 Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., & Jaakola, L. (2014). Light-controlled flavonoid biosynthesis in fruits. Frontiers in plant science, 5, 534. doi:10.3389/fpls.2014.00534 Benavides, H. (2010). Información técnica sobre la radiación ultravioleta, el índice UV y su pronóstico. Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM), Bogotá. Bi, X., Zhang, J., Chen, C., Zhang, D., Li, P., & Ma, F. (2014). Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 152(JUNE), 205–209. http://doi.org/10.1016/j.foodchem.2013.11.088 Bogs, J., Jaffé, F. W., Takos, A. M., Walker, A. R., and Robinson, S. P. (2007). The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143, 1347–1361. doi: 10.1104/pp.106.093203 Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 26(11):1301–8 Carrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-B en plantas. Idesia (Arica), 59–76. http://doi.org/10.4067/S0718-34292009000300009 Carbonell-Bejerano, P., Diago, M. P., Martínez-Abaigar, J., Martínez-Zapater, J. M., Tardáguila, J., & Núñez-Olivera, E. (2014). Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC plant biology, 14, 183. doi:10.1186/1471-2229-14-183 Cárdenas, J; Fischer, G. (2013). Clasificación botánica y morfología de manzano, peral, duraznero y ciruelo Castagna, A., Dall’Asta, C., Chiavaro, E., Galaverna, G., and Ranieri, A. (2014). Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel tomato fruits. Food Bioprocess Technol. 7, 2241– 2250. doi: 10.1007/s11947-013-1214-5 Canuto, G. A. B., Oliveira, D. R., Da Conceição, L. S. M., Farah, J. P. S., & Tavares, M. F. M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. http://doi.org/10.1016/j.foodchem.2015.06.09 Casati, P., and Walbot, V. (2005). Differential accumulation of maysin and rhamnosylisoorientin in leaves of high-altitude landraces of maize after UVB exposure. Plant Cell Environ. 28, 788–799. Chen, C., Xiao, Y. G., Li, X., and Ni, M. (2012). Light-regulated stomatal aperture in Arabidopsis. Mol. Plant 5, 566–572. doi: 10.1093/mp/sss039 Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-restrepo, A., Ueda, T., … Otegui, M. S. (2015). Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism, 1–16. https://doi.org/10.1105/tpc.15.00589 Chillo Heras, J. P. (2019). Evaluación de defoliantes químicos en el cultivo de manzana (Malus domestica Borkh.) cv. Anna en la granja El Romeral (Bachelor's thesis). Crocker, T.E., Sherman, W. B. & Wlliamson, J.G . (2016). La manzana en florida. IFAS Extencion. UNIVERSITY OF FLORIDA, 1–3. Coque, M; Díaz, MB; García, JC. (2012). El cultivo de manzano. Centro de investigación Cuenca, C. E. N., & Restrepo, P. (2003). Efecto del almacenamiento de Uva Caimarona (Pourouma cecropiifolia) a diferentes temperaturas sobre los sólidos solubles y la actividad de catalasa. Revista Colombiana de Química, 32(2), 81-92. Delgado, L. (2003). Índice ultravioleta. Departamento de Física, Universidad de Antofagasta. De Tres, V. D. M. C. (2009). Características fisicoquímicas de los frutos de tres variedades de manzanas cultivadas en la región centro-este de la provincia de Santa Fe. Revista FAVE-Ciencias Agrarias, 8, 1. Di Vaio, Claudio. (2005). Moderne tecniche di coltivazione della mela Annurca in Campania. Frutticultura. Domínguez, M. (2008). Estudio de la variabilidad morfológica en el Banco Nacional de Germoplasma del Manzano. 4. Falcone Ferreyra, M. L., Rius, S. P., and Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3:222. doi: 10.3389/fpls.2012.00222 Farman, J., Gardiner, B., and Shanklin, J. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210. doi: 10.1038/315207a0 Fischer, G. &. Miranda D. 2013 Los Frutales Caducifolios En Colombia Situación Actual , Sistemas de Cultivo Y Plan de Desarrollo. Fioletov, V., Kerr, J. B., & Fergusson, A. (2010). The UV index: definition, distribution and factors affecting it. Canadian journal of public health, 101(4), I5-I9. Fredes, C., Montenegro, G., Zoffoli, J. P., Santander, F., & Robert, P. (2014). Comparison of the Total Phenolic Content, Total Anthocyanin Content and Antioxidant Activity of Polyphenol-Rich Fruits Grown in Chile. Ciencia E Investigación Agraria, 41(1), 9–10. http://doi.org/10.4067/S0718- 16202014000100005 Garcés, N. B., & Soto, G. M. (2000). Producción del manzano (Malus sp. cv Anna) en el oriente Antioqueño con la abeja melífera, Apis mellifera L.(hymenoptera: apidae). Revista Facultad Nacional de Agronomía Medellín, 53(1), 849-862 Gies, P., van Deventer, E., Green, A. C., Sinclair, C., & Tinker, R. (2018). Review of the Global Solar UV Index 2015 Workshop Report. Health physics, 114(1), 84–90. doi:10.1097/HP.0000000000000742 Giliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M.,etal.(2005).Manipulationofthebluelightphotoreceptorcryptochrome2intom ato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137, 199–208. doi: 10.1104/pp.104.051987 Gilmore, J. W. (2010). Medición y predicción de la radiación solar global UV-B bajo cielos claros y sin nubes. Uniciencia, (24), 111-120. Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Ann Rev Plant Biol. 68:61– 84. González Talize, J., Yuri Salomón, J. (Prof. G., & Del Pozo Lira, A. (Prof. G. (2012). Influencia del clon y la luz dentro de la planta sobre la concentración de pigmentos, flavonoides, capacidad antioxidante y el color en manzanas Gala. Retrieved from http://dspace.utalca.cl/handle/1950/9379 Gomez, M. S. M. (1980). Influencia de las radiaciones uv sobre el crecimiento y pigmentos liposolubles en el ciclo vegetativo de nicotiana rustica l. Y hordeum distichon l (Doctoral dissertation, Universidad Complutense de Madrid). Goult Kevin, K. D. & C. W. (2009). Anthocianins. Biosynthesis, Functions, and Aplications. (K. G. K. Davies, C. and F. Research, P. North, N. Zealand, Daviesk@crop.cri.nz, S. of B. Sciences, … Winefiec@lincoln.ac.nz, Eds.). New York: Springer Netherlands. http://doi.org/10.1007/978-0387-77335-3 Gould KS, Mckelvie J, Markham KR.(2002). Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25:1261–9. Gould, K. S. (2004). Nature ’ s Swiss Army Knife : The Diverse Protective Roles of Anthocyanins in Leaves, 5, 314–320 Guo, N., Han, S., Zong, M., Wang, G., Zheng, S., & Liu, F. (2019). Identification and differential expression analysis of anthocyanin biosynthetic genes in leaf color variants of ornamental kale, 1–17. Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780. Harborne, J.B.; Williams, C.A. (1995). Anthocyanins and other flavonoids. Nat. Prod Rep., 639-657 Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., et al. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol. Tec. 45, 1–10. doi: 10.1016/j.postharvbio.2007.02.002 He, J., and Giusti, M. (2010). Anthocyanins: natural colorants with healthpromoting properties. Annu. Rev. Food Sci. Technol. 1, 163–187. doi: 10.1146/annurev.food.080708.100754 Hu, D. G., Sun, C. H., Zhang, Q. Y., An, J. P., You, C. X., & Hao, Y. J. (2016). Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS genetics, 12(8), e1006273. doi:10.1371/journal.pgen.1006273 Hurtado, N. H., & Pérez, M. (2014). Identificación, estabilidad y actividad antioxidante de las antocianinas aisladas de la cásscara del fruto de Capulli (Prunus serotina spp capuli (Cav) Mcvaugh Cav). Información Tecnológica, 25(4), 131–140. http://doi.org/10.4067/S0718- 07642014000400015 Hoch WA, Singsaas EL, Mccown BH. (2003). Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol. 133:1296–305 Hou DX. (2002). Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med. (2):149. Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants, 1239–1247. https://doi.org/10.1111/j.1365-3040.2010.02154.x Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad de Ciencias. Escuela de Posgrados. Maestría en Ciencias Biológicas
spellingShingle Irradiación UV-B
Fisiología vegetal
Radiación solar - Efectos fisiológicos
Radiación solar
Maestría en Ciencias Biológicas - Tesis y disertaciones académicas
Altitud
Antioxidante
Pigmentos
Luz
Gómez Sierra, Luis Alberto
Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title_full Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title_fullStr Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title_full_unstemmed Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title_short Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
title_sort influencia de la radiacion uv b sobre la biosintesis de antocianinas en frutos de manzana malus domestica borkh cv anna para condiciones de tropico alto en boyaca colombia
topic Irradiación UV-B
Fisiología vegetal
Radiación solar - Efectos fisiológicos
Radiación solar
Maestría en Ciencias Biológicas - Tesis y disertaciones académicas
Altitud
Antioxidante
Pigmentos
Luz
url http://repositorio.uptc.edu.co/handle/001/2966
work_keys_str_mv AT gomezsierraluisalberto influenciadelaradiacionuvbsobrelabiosintesisdeantocianinasenfrutosdemanzanamalusdomesticaborkhcvannaparacondicionesdetropicoaltoenboyacacolombia