Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja)
Spa: La papa amarilla diploide conocida como “papa criolla” (Solanum tuberosum Grupo Phureja), es cultivada en la región oriental de los Andes en altitudes de 2000–3400 m, se caracteriza por presentar ciclo corto y ausencia de periodo de reposo. En Colombia, la papa criolla constituye el sustento...
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Maestría |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2021
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/3682 |
_version_ | 1801705879502848000 |
---|---|
author | Araque Barrera, Eyda Johanna |
author2 | Pacheco Maldonado, José Constantino |
author_facet | Pacheco Maldonado, José Constantino Araque Barrera, Eyda Johanna |
author_sort | Araque Barrera, Eyda Johanna |
collection | DSpace |
description | Spa: La papa amarilla diploide conocida como “papa criolla” (Solanum tuberosum
Grupo Phureja), es cultivada en la región oriental de los Andes en altitudes de
2000–3400 m, se caracteriza por presentar ciclo corto y ausencia de periodo de
reposo. En Colombia, la papa criolla constituye el sustento y fuente de recursos
económicos de numerosas familias que habitan las zonas rurales. Los
materiales silvestres y comerciales del grupo Phureja son clones altamente
heterocigóticos por lo que presentan alta diversidad genética para caracteres
de interés agronómico y nutricional aún no explorados, que pueden ser
utilizados en programas de fitomejoramiento. Durante más de 100 años, los
estudios genéticos de la papa se han visto limitados por dos aspectos de su
biología, la poliploidía y la auto-incompatibilidad los cuales restringen su
reproducción, rendimiento y producción. Por tanto, es pertinente crear y/o
aplicar biotecnologías, y metodologías alternativas a las tradicionales que
permitan mejorar y aprovechar variantes genéticas de interés en favor de
optimizar la productividad y la rentabilidad del cultivo de papa. Considerando lo
anterior, se planteó como objetivo inducir regeneración adventicia a partir de
cultivo in vitro de anteras en papa amarilla diploide (Solanum tuberosum grupo
Phureja). Racimos de botones florales de 0.2 – 2.0 cm fueron escindidos y
clasificados de acuerdo tamaño y al desarrollo de las microsporas de las
anteras. Los botones florales fueron desinfectados con NaClO, se escindieron
las anteras y se sembraron medio MS sin reguladores de crecimiento y
suplementado diferentes fitohormonas en diferentes concentraciones. Para
conocer el estado de desarrollo de las células de las anteras cultivadas in vitro,
se extrajo una antera de cada tratamiento y se le realizó un raspado a su
interior en una gota de Orceína Acética. Enseguida se observó el
micropreparado en un microscopio óptico, se realizó registro fotográfico, y se
determinó el tipo de célula y el número de núcleos de las células en división.
Finalmente, y con apoyo de redes neuronales artificiales se realizó una
clasificación de botones florales para determinar aquellos botones que pueden
desarrollar procesos organogénicos y/o embriogénicos. Como resultado del
trabajo de investigación se evidenció que el tamaño del botón floral presenta
relación con la etapa de desarrollo de las células de la antera. Así como que las
condiciones fisicoquímicas indujeron cambios morfológicos en las anteras
cultivadas, estimularon la producción de callo y regeneración de embriones
somáticos, y que en los casos que hubo dicha regeneración, las células mostraron una división celular asimétrica. Los resultados obtenidos constituirán
un medio rápido para obtención de líneas totalmente homocigotas de gran valor
utilizables como progenitores de cultivares F1 en programas de mejoramiento.
Lo anterior, contribuirá a los procesos de selección fenotípica para características cualitativas y cuantitativas de manera más eficiente, beneficiando a todos los actores de la cadena de la papa. |
format | Trabajo de grado - Maestría |
id | repositorio.uptc.edu.co-001-3682 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2021 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-36822022-05-03T22:31:26Z Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) Araque Barrera, Eyda Johanna Pacheco Maldonado, José Constantino Rodríguez Molano, Luis Ernesto Arias Moreno, Diana Marcela Citogenética vegetal Células germinales Germoplasma vegetal Cultivo de células vegetales Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Anteras Callo Cultivo in vitro, Cultivo de anteras Embriogénesis Organogénesis Papa criolla y regeneración. Papa criolla: Solanum phureja Spa: La papa amarilla diploide conocida como “papa criolla” (Solanum tuberosum Grupo Phureja), es cultivada en la región oriental de los Andes en altitudes de 2000–3400 m, se caracteriza por presentar ciclo corto y ausencia de periodo de reposo. En Colombia, la papa criolla constituye el sustento y fuente de recursos económicos de numerosas familias que habitan las zonas rurales. Los materiales silvestres y comerciales del grupo Phureja son clones altamente heterocigóticos por lo que presentan alta diversidad genética para caracteres de interés agronómico y nutricional aún no explorados, que pueden ser utilizados en programas de fitomejoramiento. Durante más de 100 años, los estudios genéticos de la papa se han visto limitados por dos aspectos de su biología, la poliploidía y la auto-incompatibilidad los cuales restringen su reproducción, rendimiento y producción. Por tanto, es pertinente crear y/o aplicar biotecnologías, y metodologías alternativas a las tradicionales que permitan mejorar y aprovechar variantes genéticas de interés en favor de optimizar la productividad y la rentabilidad del cultivo de papa. Considerando lo anterior, se planteó como objetivo inducir regeneración adventicia a partir de cultivo in vitro de anteras en papa amarilla diploide (Solanum tuberosum grupo Phureja). Racimos de botones florales de 0.2 – 2.0 cm fueron escindidos y clasificados de acuerdo tamaño y al desarrollo de las microsporas de las anteras. Los botones florales fueron desinfectados con NaClO, se escindieron las anteras y se sembraron medio MS sin reguladores de crecimiento y suplementado diferentes fitohormonas en diferentes concentraciones. Para conocer el estado de desarrollo de las células de las anteras cultivadas in vitro, se extrajo una antera de cada tratamiento y se le realizó un raspado a su interior en una gota de Orceína Acética. Enseguida se observó el micropreparado en un microscopio óptico, se realizó registro fotográfico, y se determinó el tipo de célula y el número de núcleos de las células en división. Finalmente, y con apoyo de redes neuronales artificiales se realizó una clasificación de botones florales para determinar aquellos botones que pueden desarrollar procesos organogénicos y/o embriogénicos. Como resultado del trabajo de investigación se evidenció que el tamaño del botón floral presenta relación con la etapa de desarrollo de las células de la antera. Así como que las condiciones fisicoquímicas indujeron cambios morfológicos en las anteras cultivadas, estimularon la producción de callo y regeneración de embriones somáticos, y que en los casos que hubo dicha regeneración, las células mostraron una división celular asimétrica. Los resultados obtenidos constituirán un medio rápido para obtención de líneas totalmente homocigotas de gran valor utilizables como progenitores de cultivares F1 en programas de mejoramiento. Lo anterior, contribuirá a los procesos de selección fenotípica para características cualitativas y cuantitativas de manera más eficiente, beneficiando a todos los actores de la cadena de la papa. Maestría Magister en Ciencias Biológicas 2021-08-18T16:19:02Z 2021-08-18T16:19:02Z 2020 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Araque Barrera, E. J. (2020). Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja). (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3682 http://repositorio.uptc.edu.co/handle/001/3682 spa Adjemout, O., Hammouche, K., & Diaf, M. (2007). Automatic seeds recognition by size, form and texture features. En 9th International Symposium on Signal Processing and Its Applications (pp. 1-4). https://doi.org/10.1109/ISSPA.2007.4555428 Aguirre, G., Baudoin, J., & Arnéz, L. (2016). Aplicación del cultivo de tejidos en la multiplicación y conservación de los recursos fitogenéticos. CochambaBolibia: Comisión Universitaria para el Desarrollo (CUD)-Consejo Interuniversitario de la Comunidad Francesa de Bélgia CIUF. Akbar-Anjum, M., & Hakoomat, A. (2004). Effect of Culture Medium on Direct Organogenesis from Different Explants of Various Potato Genotypes. Biotechnology, 3(2), 187-193. Ali, A., Qadri, S., Mashwani, W. K., Belhaouari, S. B., Naeem, S., Rafique, S., … Rafique, S. (2020). Machine learning approach for the classification of corn seed using hybrid features. International Journal of Food Properties, 23(1), 1110-1124. https://doi.org/10.1080/10942912.2020.1778724 Alvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), 70-77. https://doi.org/https://doi.org/10.1016/j.eja.2008.07.005 Andrade, E. (2013). Estudio de los principales tipos de redes neuronales y las herramientas para su aplicación. Universidad Politécnica Salesiana. Recuperado de http://dspace.ups.edu.ec/handle/123456789/4098 Anónimo. (2017). Inteligencia Artificial: ¿Qué es? Recuperado de https://www.salesforce.com/mx/blog/2017/6/Que-es-la-inteligencia-artificial.html Arab, M., Yadollahi, A., Shojaeiyan, A., & Ahmadi, H. (2016). Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock. Frontiers in Plant SRecuperado de https://www.frontiersin.org/article/10.3389/fpls.2016.01526cience. Arellano, M., Villavicencio, E., & Garcia, S. (2010). Producción de plántulas y semilla prebásica de variedades comerciales de papa libres de enfermedades (Primera). México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Centro de Investigación Regional Noreste Campo Experimental Saltillo. Asakaviciute, R., Clement, C., & Razukas, A. (2007). The genetic aspect in anther culture of Lithuanian potato (Solanum tuberosum L.) cultivars. Biologija, 18(1), 19-22. Azamathulla, H., & Ghani, A. (2011). Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams. Water Resources Management, 25(6), 1537-1544. https://doi.org/10.1007/s11269-010-9759-9 Sunderland, N., Collins, G. B., & Lane, C. (1974). The Role of Nuclear Fusion in Pollen Embryogenesis of Datura innoxia Mill. Planta (Berl.), 117, 227-241. Tang, K., Sun, X., & Zhang, Z. (1998). Anther culture response of wild Oryza species. Plant Breeding, 117, 443-446. zygotic embryos in white pine (Pinus strobus L.). Plant Cell Reports, 24(1), 1-9. https://doi.org/10.1007/s00299-005-0914-3 Touraev, A., Pfosser, M., & Heberle-Bors, E. (2001). The Microspore: A Haploid Multipurpose Cell. Advances in Botanical Research, 35, 53–109. Tur-Giménez, L. (2020). Cultivo de anteras y microsporas aisladas con extractos purificados de endospermo líquido de Cocos nucifera. Universitat Politécnica de Valencia. Vural, G., Ari, E., Zengin, S., & Ellialtioglu, S. (2019). Development of Androgenesis Studies on Eggplant (Solanum melongena L.) in Turkey from Past to Present. Applied Life Sciencies, (IntechOpen), 27. https://doi.org/10.5772/intechopen.88299 Wang, L., Zhang, B., Guo, J., & Yang, G. (2004). Studies of effects of several factors on anther culture of Capsicum annuum L. Acta horticulturae, 31, 199-204. Wang, M., Bergen, S. Van, & Duijn, B. Van. (2000). Insights into a Key Developmental Switch and Its Importance for Efficient Plant Breeding. Plant physiology, 124, 523-530. Yeung, E. (1995). Patrones estructurales y de desarrollo en embriogénesis somática. En T. Thorpe (Ed.), In vitro Embriogénesis en Plantas. Ciencia vegetal actual y biotecnología en la agricultura (Vol. 20, pp. 205-247). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-011-0485-2_6 Zagorska, N., Shtereva, A., Dimitrov, B., & Kruleva, M. (1998). Induced androgenesis in tomato (Lycopersicon esculentum Mill.). Plant Cell Reports, 17, 968-973. Bali, S., Patel, G., Novy, R., Vining, K., Brown, C., Holm, D., … Sathuvalli, V. (2018). Evaluation of genetic diversity among Russet potato clones and varieties from breeding programs across the United States. PLoS ONE, 13(8), 1-18. https://doi.org/10.1371/journal.pone.0201415 Cámara de Comercio de Bogotá. (2015). Manual Papa. Programa de apoyo agrícola y agroindustrial. Bogotá D.C. Colombia. Zamir, D., Jones, R. A., & Kedar, N. (1980). Anther culture of male-sterile tomato (Lycopersicon esculentum mill.) mutants. Plant Science Letters, 17(3), 353-361. https://doi.org/https://doi.org/10.1016/0304-4211(80)90168-6 Zeng, F., Zhang, X., Jin, S., Cheng, L., Liang, S., Hu, L., … Cao, J. (2007). Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tissue and Organ Culture, 90, 63-70. https://doi.org/10.1007/s11240-007-9253-0 Zhang, C., Tsukuni, T., Ikeda, M., Sato, M., Okada, H., Ohashi, Y., … Komori, S. (2013). Effects of the Microspore Development Stage and Cold Pre-treatment of Flower Buds on Embryo Induction in Apple (Malus × domestica Borkh.) Anther Culture. Journal of the Japanese Society for Hoticultural Science, 82(2), 114-124. Bamberg, J. B., Martin, M. W., Abad, J., Jenderek, M. M., Tanner, J., Donnelly, D. J., … Novy, R. G. (2016). In vitro technology at the US Potato Genebank. In vitro Cellular and Developmental Biology - Plant, 52(3), 213-225. https://doi.org/10.1007/s11627-016-9753-x Barbosa, C. D., Viana, A. P., Quintal, S. S. R., & Pereira, M. G. (2011). Artificial neural network analysis of genetic diversity in Carica papaya L. Crop Breeding and Applied Biotechnology, 11(3), 224-231. https://doi.org/10.1590/s1984- 70332011000300004 Barragán, J. (2019). Descripción y análisis del abastecimiento en las principales centrales de abastos del país. Revista de Papa, 49, 44-48. Barrero, I., & Chaparro, A. (2008). Expresión Gus en explantes de (en explantes de Solanum phureja (Juz. et. Buk) Var. Criolla Colombia, transformados con Agrobacterium tumefaciens. Acta biol.Colomb., 13(1), 119- 130. Bengio, Y. (2016). Aprendizaje profundo. Investigación y Ciencia. Prensa Científica, S.A. Recuperado 30 de octubre de 2020, de https://www.investigacionyciencia.es/revistas/investigacion-y- ciencia/el-augede-los-mamferos-678/aprendizaje-profundo-14415 Benítez, R., Escudero, G., Kanaan, S., & Masip, D. (2014). Inteligencia Artificial Avanzada. Barcelona, España: Editorial UOC. Bever, J., & Felber, F. (1992). The theoretical population genetics of autopolyploidy. En D. Futuyma & J. Antonovics (Eds.), Oxford surveys in evolutionary biology (Vol. 8, pp. 185–218). New York: Oxford University Press. Cappadocia, M., Cheng, D., & Ludlum, R. (1986). Self-compatibility in doubled haploids and their hybrids, regenerated via anther culture in self-incompatible Solanum chacoense Bitt. Theoretical and Applied Genetics, 72, 66-69 Bishop, C. (2006). Reconocimiento de patrones y aprendizaje automático. New York: Springer-Verlag. Blakeslee, A., Bellin, J., Farnhaz, M., & Bergn, D. (1922). A haploid mutant in the Jimson weed, Datura stramonium. Science, 55(1433), 646-647. Blum, J. (2019). La Inteligencia Artificial y su Impacto en los Negocios Digitales. Recuperado 21 de agosto de 2019, de https://www.jonathanblum.tv/es/lainteligencia-artificial-y-su-impacto-en-los-negocios- digitales/ Bobkov, S. (2014). Obtaining Calli and regenerated plants in anther cultures of pea. Czech Journal of Genetics and Plant Breeding, 50(2), 123-129. https://doi.org/10.17221/137/2013-cjgpb Bohórquez, M. (2019). Estudio de la Microsporogénesis y Determinación de la Curva de Radiosensibilidad de Polen a la Radiación Gamma Co60 en Papa (Solanum tuberosum Grupo Phureja). Universidad Pedagógica y Tecnológica de Colombia. Bonilla, M. H., Cardozo, F., & Morales, A. (2009). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia, con énfasis en papa criolla. Bogotá, Colombia. Bradshaw, J., Hackett, C., Lowe, R., McLean, K., Stewart, H., Tierney, I., … Bryan, G. (2006). Detection of a quantitative trait locus for both foliage and tuber resistance to late blight Phytophthora infestans (Mont. de Bary) on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl Genet, 113, 943-951. Brenes, A. (2010). Producción de plantas haploides de papa (Solanum spp.) por medio del cultivo in vitro de anteras. Cartago. Breukelen, E. (1981). Pseudogamic production ofdihaploids and monoploids in Solanum tuberosura and some related species. Pudoc, Wageningen. 121 p. Wageningen: Centre for Agricultural Publishing and Documentation. Breukelen, E. W. M. V., M.S.Ramanna, & J.G.Th.Hermsen. (1977). Parthenogenetic monohaploids (2n=2=12) from solanum tuberosum L.and the production of homozygous potato diploids. Euphytica, 26, 263-271. Cappadocia, M., Cheng, D., & Ludlum, R. (1986). Self-compatibility in doubled haploids and their hybrids, regenerated via anther culture in self-incompatible Solanum chacoense Bitt. Theoretical and Applied Genetics, 72, 66-69 Britt, A. B., & Kuppu, S. (2016). Cenh3: An emerging player in haploid induction technology. Frontiers in Plant Science, 7, 1-10. https://doi.org/10.3389/fpls.2016.00357 Caicedo, E. (2012). Redes Neuronales Artificiales Arquitecturas y Aprendizaje. PSI Percepción y Sistemas Inteligentes. Cali. Recuperado de https://www.academia.edu/8172191/Redes_Neuronales_Artificiales_Arquitectur as_y_Aprendizaje Calvo, D. (2017). Clasificación de redes neuronales artificiales. Recuperado 5 de noviembre de 2019, de https://www.diegocalvo.es/clasificacion-de-redesneuronales-artificiales/ Cárdenas, R. (2006). Inteligencia Artificial. Práctica 2. Redes Neuronales. Recuperado de https://www2.ulpgc.es/hege/almacen/download/38/38584/practica_ia_2.pdf Cardoso, J., Abdelgalel, A., Chiancone, B., Latado, R., & Lain, O. (2016). Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosystems, 150(2), 304-312. https://doi.org/http://dx.doi.org/10.1080/11263504.2014.987847 Carron, M., D’Auzac, J., Etienne, H., E, H., Housti, F., Michaux, N., & Montoro, P. (1992). Biochemical and histological features of somatic embryogenesis in Hevea brasiliensis. Indian Journal Natural Rubber Research, 5(1-2), 7-17. Recuperado de http://www.biomedcentral.com/1471-2229/12/244 Chandra, K., Sekhar, N., & Sawhney, N. (1984). A scanning electron microscopy study of the developmental and surface features of floral organs of tomato (Lycopersicon esculentum). Canadian Journal of Botany, 62, 2403-2413. Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y., Sung, Z. R., & Goodrich, J. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 131(21), 5263-5276. https://doi.org/10.1242/dev.01400 Charbit, E., Legavre, T., Lardet, L., Bourgeois, E., Ferrière, N., & Carron, M. (2004). Identification of differentially expressed cDNA sequences and histological characteristics of Hevea brasiliensis calli in relation to their embryogenic and regenerative capacities. Plant Cell Reports, 22(8), 539-548. https://doi.org/10.1007/s00299-003-0737-z Datta, S. K. (2005). Androgenic haploids: Factors controlling development and its application in crop improvement. Current Science, 89(11), 1870-1878. Recuperado de http://www.jstor.org/stable/24111119 Ibaraki, Y., & Kenji, K. (2001). Application of image analysis to plant cell suspension cultures. Computers and Electronics in Agriculture, 30(1), 193-203. https://doi.org/https://doi.org/10.1016/S0168-1699(00)00164-2 Dong, Y. Q., Zhao, W. X., Li, X. H., Liu, X. C., Gao, N. N., Huang, J. H., … Tang, Z. H. (2016). Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Reports, 35(10), 1991-2019. https://doi.org/10.1007/s00299-016-2018-7 Dudits, D., Bogre, L., & Gyorgyey, J. (1991). Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. Journal of Cell Science, 99, 475-484. Dutta, S., & Pattanayak, A. (2017). Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato. In vitro Cellular and Developmental Biology - Plant, 53(6), 520-526. https://doi.org/10.1007/s11627-017-9825-6 Dwivedi, S. L., Britt, A. B., Tripathi, L., Sharma, S., Upadhyaya, H. D., & Ortiz, R. (2015). Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 33(6 Pt 1), 812-829. https://doi.org/10.1016/j.biotechadv.2015.07.001 Elhiti, M., Stasolla, C., & Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In vitro Cellular & Developmental Biology-Plant, 49(632-642). https://doi.org/10.1007/s11627- 013-9547-3 Elhiti, M., Tahir, M., Gulden, R. H., Khamiss, K., & Stasolla, C. (2010). Modulation of embryoforming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. Journal of Experimental Botany, 61(14), 4069-4085. https://doi.org/10.1093/jxb/erq222 Ellialtioğlu, S., Başay, S., & Kuşvuran, Ş. (2012). Investigations on the Pollen Dimorphism and its relationship with Anther Culture in Eggplant. Tarım Bilimleri Araştırma Dergisi, 5(1), 149-152. Emamgholizadeh, S., Parsaeian, M., & Baradaran, M. (2015). Seed yield prediction of sesame using artificial neural network. European Journal of Agronomy, 68, 89-96. https://doi.org/https://doi.org/10.1016/j.eja.2015.04.010 Fan, Z., Armstrong, K. C., & Keller, W. A. (1988). Development of microsporesin vivo andin vitro inBrassica napus L. Protoplasma, 147(2), 191-199. https://doi.org/10.1007/BF01403347 Ferrie, A., Irmen, K., Beattie, A., & Rossnagel, B. (2014). Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: effect of pre-culture and post-culture conditions. Plant Cell, Tissue and Organ Culture, 116(1), 89-96. https://doi.org/10.1007/s11240- 013-0385-0 Ibrahim, A. M., Kayat, F. B., Mat, Z., Susanto, D., & Ariffulah, M. (2014). Determination of Suitable Microspore Stage and Callus Induction from Anthers of Kenaf (Hibiscus cannabinus L.). The Scientific World Journal, 2014, 5-10. Ferrie, A., & Keller, W. (1997). Production of haploids in Brassica spp . via microspore. Plan Tissue Culture Manual E6, 1-17. Germana, M. (2011a). Anther culture for haploid and doubled haploid production. Plant Cell Tissue and Organ Culture, 104, 283-300. https://doi.org/10.1007/s11240-010-9852-z Germana, M. (2011b). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 30, 839-857. https://doi.org/10.1007/s00299-011-1061-7 González, J., & Jouve, N. (2005). Microspore development during in vitro androgenesis in triticale. Biologia Plantarum, 49(1), 23-28. https://doi.org/10.1007/s10535-005-3028-4 Grafi, G., Ben-Meir, H., Avivi, Y., Moshe, M., Dahan, Y., & Zemach, A. (2007). Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Developmental Biology, 306(2), 838-846. https://doi.org/https://doi.org/10.1016/j.ydbio.2007.03.023 Grando, M., & Moraes, M. (1997). Two point deterministic model for acquisition of in vitro pollen grain androgenetic capacity based on wheat studies. Brazilian Journal of Genetics, 20(3), 467- 476. https://doi.org/10.1590/S0100-84551997000300018 Gresshoff, P., & Doy, C. (1972). Development and Differentiation of Haploid Lycopersicon esculentum (Tomato). Planta, 107(2), 161-170. Greyson, R., & Sawhney, V. (1972). Initiation and early growth of flower organs of Nigella and Lycopersicon: Insights from allometry. Gaceta Botánica, 133(2), 184-190. Guzmán, E., Ramírez, C., Güitrón, M., Palmeros, P., & Espino, A. (2020). Cultivo de anteras e inducción de callo haploide en germoplasma bc3 de girasol (Helianthus annuus L.). Acta Universitaria, 30, 1-15. https://doi.org/10.15174/au.2020.2765 Hand, C., Maki, S., & Reed, B. M. (2014). Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell, Tissue and Organ Culture (PCTOC), 119(2), 411-425. https://doi.org/10.1007/s11240-014-0544-y Irikova, T., & Grozeva, S. (2011). Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Phy, 33, 1559-1570. https://doi.org/10.1007/s11738-011-0736-6 Haroon, R., & Hussain, L. (2015). Seed Classification using Machine Learning Techniques. Journal of Multidisciplinary ENgineering Sciencie and Techonology (JMEST), 2(5), 1098-1102. Hernández, A., & Díaz, H. (2019). Inducción in vitro de callo embriogenico a partir del cultivo de anteras en «papa amarilla» Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. https://doi.org/http://doi.org/10.22497/arnaldoa.261.26111 ISSN: Huamán, Z., & Spooner, D. (2002). Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany, 89(947-965), 2002. Ivers, D. R., Palmer, R. G., & Fehr, W. (1974). Anther Culture in Soybeans. Crop Breeding and Applied Biotechnology, 14, 891-893. Kaltchuk, E., Mariath, J. E., Mundstock, E., Hu, C., & Bodanese, M. H. (1997). Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tiss, 49, 107-115. Kasha, K. (2005). Chromosome doubling and recovery of doubled-haploid plants. En C. Palmer, W. Keller, & K. Kasha (Eds.), Biotechnology in agriculture and forestry (pp. 123-152). Springer. https://doi.org/https://doi.org/https://doi.org/10.1007/3-540- 26889-8_7 Kasperbauer, M., & Wilson, H. (1979). Haploid plant production and use. En R. Durbin (Ed.), Nicotiana procedures for experimental use (pp. 33-39). U.S. Dept. Agr. Tecnhol. Bul. 1586. Kim, M., Kim, J., Yoon, M., Choi, D., & Lee, K. (2004). Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell Tissue and Organ Culture, 77, 63-72 Komamine, A., Murata, N., & Nomura, K. (2005). 2004 SIVB Congress Symposium Proceeding: Mechanisms of Somatic Embryogenesis in Carrot Suspension Cultures – Morphology, Physiology, Biochemistry, And Molecular Biology. In vitro Cellular & Developmental BiologyPlant, 41, 6-10. https://doi.org/10.1079/IVP2004593 Koul, A. K., & Karihaloo, J. L. (1977). In vivo embryoids from anthers of Narcissus biflorusCurt. Euphytica, 26(1), 97-102. https://doi.org/10.1007/BF00032074 Rashid, A. (1983). Pollen dimorphism in relation to pollen plant formation. Physiologia Plantarum, 58, 544-548. Kurtulmus, F., Alibas, İ., & Kavdir, I. (2016). Classification of pepper seeds using machine vision based on neural network. Int. J. Agri. Biol., 9(1), 51-62. https://doi.org/10.3965/j.ijabe.20160901.1790 Lantos, C., Juhász, A., Somogyi, G., Ötvös, K., Somogyii, N., & Pauk, J. (2009). Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue and Organ Culture, 97, 285-293. https://doi.org/10.1007/s11240-009-9527-9 Lauxen, M., Kaltchuk-Santos, E., Hu, C., Callegari, S., & Bodanese-Zanettini, M. H. (2003). Association between Floral Bud Size and Developmental Stage in Soybean Microspores. Brazilian Archives of Biology and Technology, 46(4), 515-520. Mahajan, S., Mittal, S. K., & Das, A. (2018). Machine vision based alternative testing approach for physical purity, viability and vigour testing of soybean seeds (Glycine max). Journal of Food Science and Technology, 55(10), 3949-3959. https://doi.org/10.1007/s13197-018-3320-x Mansouri, A., Fadavi, A., & Mahdi, S. (2015). Effects of length and position of hypocotyl explants on Cuminum cyminum L. callogensis by image processing analysis. Plant Cell, Tissue and Organ Culture, 121(3), 657-666. https://doi.org/10.1007/s11240-015-0736-0 Maraschin, S., De-Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. https://doi.org/10.1093/jxb/eri190 Medeiros, A., Capobiango, N., Da-SIlva, J., Da-Silva, L., Barboza, C., & Fernandes, D. (2020). Interactive machine learning for soybean seed and seedling quality classification. Scientific Reports, 10, 1-10. Momin, M., Yamamoto, K., Miyamoto, M., Kondo, N., & Grift, T. (2017). Machine vision based soybean quality evaluation. Computers and Electronics in Agriculture, 140, 452-460. https://doi.org/10.1016/j.compag.2017.06.023 Mosquera, T., Del-Castillo, S., Cuéllar, D., & Rodríguez, L. E. (2018). Breeding Differently : Participatory Selection and Scaling Up Innovations in Colombia. Potato Research, 60, 361-381. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/DOI: 10.1111/j.1399-3054.1962.tb08052.x Rêgo, E., Finger, F., & Monteiro, M. (2012). Types, Uses and Fruit Quality of Brazilian Chili Peppers. Spices: Types, Uses and Health Benefits, 131-144. Niazian, M., Sadat-Noori, S., Abdipour, M., Tohidfar, M., & Mahadi, S. (2018). Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague). In vitro Cellular & Developmental Biology - Plant, 54(1), 54-68. https://doi.org/10.1007/s11627-017-9877-7 Niazian, M., Shariatpanahi, M., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma, 256, 1317-1332. Nishi, A., Kato, K., Takahashi, M., & Yoshida, R. (1977). Partial Synchronization of Carrot Cell Culture by Auxin Deprivation. Physiologia Plantarum, 39(1), 9-12. https://doi.org/10.1111/j.1399- 3054.1977.tb09277.x Nowaczyk, L., Nowaczyk, P., & Olszewska, D. (2016). Treating donor plants with 2,4- dichlorophenoxyacetic acid can increase the effectiveness of induced androgenesis in Capsicum spp. Scientia Horticulturae, 205, 1-6. https://doi.org/10.1016/j.scienta.2016.03.044 Núñez, V. (2020). La tecnología doble haploide en el mejoramiento genético de frutas exóticas: uchuva, Physalis peruviana L., como estudio de caso. Revista Colombiana de Biotecnología, 22(1), 2-5. https://doi.org/10.15446/rev.colomb.biote.v22n1.88590 Olszewska, D., Kisiala, A., Niklas-nowak, A., & Nowaczyk, P. (2014). Study of in vitro anther culture in selected genotypes of genus Capsicum. Turkish Journal of Biology, 38, 118-124. https://doi.org/10.3906/biy-1307-50 Pandey, D., Singh, A., & Chaudhary, B. (2012). Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model. Journal of Botany, 2012, 1-9. https://doi.org/10.1155/2012/375829 Peña, C., Restrepo-Sánchez, L. P., Kushalappa, A., Rodríguez-Molano, L. E., Mosquera, T., & Narváez-Cuenca, C. E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT - Food Science and Technology, 62(1), 76-82. https://doi.org/10.1016/j.lwt.2015.01.038 Piyatrakul, P., Putranto, R.-A., Martin, F., Rio, M., Dessailly, F., Leclercq, J., … Montoro, P. (2012). Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. Plant Biology, 12(244), 1-20. Recuperado de http://www.biomedcentral.com/1471-2229/12/244 Pok, P., Oh, E. U., Yi, K., Kang, J. H., Ko, B. Y., & Kim, H. B. (2015). Characterization of Microspore Development and Pollen Tube Growth Response to Self- and Cross-pollination in Jeju Old Local Citrus Species. Horticulture, Environment, and Biotechnology, 56(2), 225-232. https://doi.org/10.1007/s13580-015-0133-y Rêgo, M., Rêgo, E., & Farias, L. (2012). Induced anther callogenesis of Capsicum annuum L. Acta Horticulturae, 929, 411-416. https://doi.org/DOI: 10.17660 / ActaHortic.2012.929.59, https://doi.org/10.17660/ActaHortic.2012.929.59. Prakash, M. G., & Gurumurthi, K. (2009). Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell, Tissue and Organ Culture (PCTOC), 100(1), 13. https://doi.org/10.1007/s11240-009-9611-1 Quevedo, L. (2018). Comunicación Personal. Universidad Distrital Francisco José de Caldas. Bogotá D. C. Ramanna, M. S., & Hermsen, J. G. T. (1974). Embryoid formation in the anthers of some interspecific hybrids in Solanum. Euphytica, 23(2), 423-427. https://doi.org/10.1007/BF00035889 Rodríguez, L., Ñustez, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomia Colombiana, 27(3), 289-303. Rodríguez, M., Latsague, M., Chacón, M., & Astorga, P. (2014). Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque, 35(1), 111-118. https://doi.org/10.4067/S0717-92002014000100011 Santana, N. (1982). Determinación de un medio para la obtención de callos en variedades de caña de azúcar (Saccharum spp. híbrido) in vitro. Cultivos Tropicales, 24, 566-577. SAS Institute Inc. (2019). SAS University edition virtual application. Cary, NC, USA, 2019. Recuperado de http://www.sas.com/en_us/software/university-edition.html Schiavone, F., & Cooke, T. (2011). A geometric analysis of somatic embryo formation in carrot cell cultures. Canadian Journal of Botany, 63, 1573-1578. https://doi.org/10.1139/b85-218 Schiavone, F., & Racusen, R. (1991). Regeneration of the root pole in surgically transected carrot embryos occurs by position-dependent, proximodistal replacement of missing tissues. Development (Cambridge, England), 113(4), 1305-1313. Seguí-Simarro, J. (2016). Chapter 9: Androgenesis in Solanaceae. En In vitro Embryogenesis in Higher Plants (Vol. 1359, p. 4939). https://doi.org/10.1007/978-1-4939-3061-6_9. Aziz, a. N., Seabrook, J. E. a., Tai, G. C. C., & Jong, H. (1999). Screening diploid Solarium genotypes responsive to different Anther culture conditions and ploidy assessment of Anther-derived roots and plantlets. American Journal of Potato Research, 76(1), 9-16. https://doi.org/10.1007/BF02853552 Seguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. https://doi.org/10.1007/s00299-010-0984-8 Seguí-Simarro, J., & Nuez, F. (2005). Meiotic metaphase I to telophase II as the most responsive stage during microspore development for callus induction in tomato (Solanum lycopersicum ) anther cultures. Acta Physiologiae Plantarum, 27(4), 675-685. https://doi.org/10.1007/s11738-005-0071-x Seguí-Simarro, J., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. https://doi.org/10.1093/jxb/erl271 Sharp, W. R., Dougall, D. K., & Paddock, E. F. (1971). Haploid Plantlets and Callus from Immature Pollen Grains of Nicotiana and Lycopersicon. Bulletin of the Torrey Botanical Club, 98(4), 219-222. https://doi.org/10.2307/2483689 Sharp, W., & Raskin, R. (1972). The Use of Nurse Culture in the Development of Haploid Clones in Tomato. Planta, 104, 357-361. Shriram, V., Kumar, V., & Shitole, M. G. (2008). Indirect organogenesis and plant regeneration in Helicteres isora L., an important medicinal plant. In vitro Cellular & Developmental Biology - Plant, 44(3), 186-193. https://doi.org/10.1007/s11627-008-9108-3 Smith, R. (2013). Plant tissue culture: Techniques and experiments. Londres, UK: Academic Press Elsevier. Sood, S., Dwivedi, S., Reddy, T., Prasanna, P., & Sharma, N. (2013). Improving androgenesismediated doubled haploid production efficiency of FCV tobacco (Nicotiana tabacum L.) through in vitro colchicine application. Plant Breeding, 132, 764-771. https://doi.org/10.1111/pbr.12114 Southwort, D. (2001). Sperm and Generative Cell. Isolation and Manipulation. En S. Bhojwani & W. Soh (Eds.), Current Trends in the Embryology of Angiosperms (pp. 17-32). SpringerScience+Business Media, B.V Suescún, L., Herrera, J., & Acuña, J. (2020). Estudio de los factores limitantes para la obtención de plantas haploides de Coffea arabica. Revista Cenicafé, 71(1), 32-47. https://doi.org/10.38141/10778/1118 Bajaj, Y., & Sopory, S. (1986). Biotechnology of potato improvement. En Y. Bajaj (Ed.), Biotechnology in agriculture and forestry (Vol. 2, pp. 429-454). Berlin Heidelberg New York Tokyo: Crops I. Springer. Summers, W., Jaramillo, J., & Bailey, T. (1992). Microspore Developmental Stage and Anther Length Influence the Induction of Tomato Anther Callus. Horticultural Science, 27(7), 838-840. Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (164 páginas) : ilustraciones, tablas, figuras. application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ciencias Tunja Maestría en Ciencias Biológicas |
spellingShingle | Citogenética vegetal Células germinales Germoplasma vegetal Cultivo de células vegetales Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Anteras Callo Cultivo in vitro, Cultivo de anteras Embriogénesis Organogénesis Papa criolla y regeneración. Papa criolla: Solanum phureja Araque Barrera, Eyda Johanna Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title | Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title_full | Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title_fullStr | Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title_full_unstemmed | Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title_short | Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja) |
title_sort | regeneracion adventicia a traves del cultivo de anteras en papa amarilla diploide solanum tuberosum grupo phureja |
topic | Citogenética vegetal Células germinales Germoplasma vegetal Cultivo de células vegetales Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Anteras Callo Cultivo in vitro, Cultivo de anteras Embriogénesis Organogénesis Papa criolla y regeneración. Papa criolla: Solanum phureja |
url | http://repositorio.uptc.edu.co/handle/001/3682 |
work_keys_str_mv | AT araquebarreraeydajohanna regeneracionadventiciaatravesdelcultivodeanterasenpapaamarilladiploidesolanumtuberosumgrupophureja |