Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial

Spa: El trabajo contiene los resultados del estudio realizado sobre la diversidad taxonómica y el potencial funcional presente en el bucle bacteriano del Lago de Tota, y su relación con otros lagos de distintos rasgos ecogeográficos a nivel mundial.

Bibliographic Details
Main Author: Forero Pineda, Nicolás
Other Authors: Gómez Palacio, Andrés Mauricio
Format: Trabajo de grado - Maestría
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2021
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/3683
_version_ 1801705885554180096
author Forero Pineda, Nicolás
author2 Gómez Palacio, Andrés Mauricio
author_facet Gómez Palacio, Andrés Mauricio
Forero Pineda, Nicolás
author_sort Forero Pineda, Nicolás
collection DSpace
description Spa: El trabajo contiene los resultados del estudio realizado sobre la diversidad taxonómica y el potencial funcional presente en el bucle bacteriano del Lago de Tota, y su relación con otros lagos de distintos rasgos ecogeográficos a nivel mundial.
format Trabajo de grado - Maestría
id repositorio.uptc.edu.co-001-3683
institution Repositorio Institucional UPTC
language spa
publishDate 2021
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-36832022-05-03T22:09:55Z Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial Forero Pineda, Nicolás Gómez Palacio, Andrés Mauricio Aranguren Riaño, Nelson Javier Comunidades bacterianas Diversidad bacteriana Biología acuática - Lago de Tota (Boyacá, Colombia) Cuerpos de agua - Lago de Tota (Boyacá, Colombia) Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Spa: El trabajo contiene los resultados del estudio realizado sobre la diversidad taxonómica y el potencial funcional presente en el bucle bacteriano del Lago de Tota, y su relación con otros lagos de distintos rasgos ecogeográficos a nivel mundial. Maestría Magister en Ciencias Biológicas 2021-08-18T17:41:51Z 2021-08-18T17:41:51Z 2020 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Forero Pineda, N. (2020). Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial. (Tesis de maestría)- Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3683 http://repositorio.uptc.edu.co/handle/001/3683 spa Ahumada, M., Aguirre, F., Contreras, M., and Figueroa, A. (2011). "Guía para la conservación y seguimiento ambiental de humedales andinos". Santiago, Chile: MMA). Alonso, R.N., and Rojas, W. (2020). "Origin and Evolution of the Central Andes: Deserts, Salars, Lakes, and Volcanoes," in Microbial Ecosystems in Central Andes Extreme Environments. Springer), 3-19. Aranguren-Riaño, N.J., Shurin, J.B., Pedroza-Ramos, A., Muñoz-López, C.L., López, R., and Cely, O. (2018). Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake. Aquatic Sciences 80(4), 39. Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., et al. (2018). Structure and function of the global topsoil microbiome. Nature 560(7717), 233-237. doi: 10.1038/s41586-018-0386-6. Barberán, A., and Casamayor, E.O.J.A.M.E. (2010). Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. 59(1), 1-10. Brendan Logue, J., and Lindström, E.S. (2008). Biogeography of Bacterioplankton in Inland Waters. 1 %J Freshwater Reviews(1), 99-114, 116. Burns, A.R., Stephens, W.Z., Stagaman, K., Wong, S., Rawls, J.F., Guillemin, K., et al. (2016). Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME Journal 10(3), 655-664. doi: 10.1038/ismej.2015.142. Canfield, D.E., Glazer, A.N., and Falkowski, P.G.J.s. (2010). The evolution and future of Earth’s nitrogen cycle. 330(6001), 192-196. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods 7(5), 335-335. Casallas, J., and Gunkel, G.J.L. (2001). Algunos aspectos limnológicos de un lago altoandino: el lago San Pablo, Ecuador. 20(2), 215-232 Chaffron, S., Rehrauer, H., Pernthaler, J., and Von Mering, C.J.G.r. (2010). A global network of coexisting microbes from environmental and whole-genome sequence data. 20(7), 947-959. Chen, W., Ren, K., Isabwe, A., Chen, H., Liu, M., and Yang, J. (2019). Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 7(1), 138-138. doi: 10.1186/s40168-019- 0749-8. Corno, G., and Jürgens, K. (2008). Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environ Microbiol 10(10), 2857-2871. doi: 10.1111/j.1462- 2920.2008.01713.x. Csardi, G., and Nepusz, T.J.I., complex systems (2006). The igraph software package for complex network research. 1695(5), 1-9. Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460-2461. doi: 10.1093/bioinformatics/btq461. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194- 2200. doi: 10.1093/bioinformatics/btr381. Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008). The microbial engines that drive Earth's biogeochemical cycles. Science (New York, N.Y.) 320(5879), 1034-1039. doi: 10.1126/science.1153213 Feng, C., Jia, J., Wang, C., Han, M., Dong, C., Huo, B., et al. (2019). Phytoplankton and Bacterial Community Structure in Two Chinese Lakes of Different Trophic Status. Microorganisms 7(12), 621. doi: 10.3390/microorganisms7120621. Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., et al. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of América 109(52), 21390-21395. doi: 10.1073/pnas.1215210110. Freedman, Z.B., and Zak, D.R. (2015). Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. 24(12), 3170- 3180. doi: 10.1111/mec.13224. Fuhrman, J.A. (2009). Microbial community structure and its functional implications. Nature 459(7244), 193-199. doi: 10.1038/nature08058. Galili, T.J.B. (2015). dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. 31(22), 3718-3720. González Díaz, E.F., and Di Tommaso, I.J.R.d.l.A.g.A. (2014). Paleogeoformas lacustres en los lagos Musters y Colhué huapí, su relación genética con un paleolago Sarmiento previo, centro-sur del Chubut. 71(3), 416-426. Hessen, D.O., Faafeng, B.A., Smith, V.H, Bakkestuen, V. and Walseng , B. (2006). Extrinsic and intrinsic controls of zooplankton diversity in lakes. 87, 433-443. doi:10.1890/05-0352. Huang, Q., Briggs, B.R., Dong, H., Jiang, H., Wu, G., Edwardson, C., et al. (2014). Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China. PLoS ONE 9(11), 1-10. doi: 10.1371/journal.pone.0111681. Huang, X., Hu, B., Wang, P., Chen, X., and Xu, B. (2016). Microbial diversity in lake– river ecotone of Poyang Lake, China. Environmental Earth Sciences 75(11), 965- 965. Hubbell, S.P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology 19, 166-172. doi:10.1111/j.0269- 8463.2005.00965.x Ji, B., Qin, H., Guo, S., Chen, W., Zhang, X., and Liang, J. (2018). Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicology and Environmental Safety 157, 388-394. doi: https://doi.org/10.1016/j.ecoenv.2018.03.086. Jiang, Y., Huang, H., Ma, T., Ru, J., Blank, S., Kurmayer, R., et al. (2019). Temperature Response of Planktonic Microbiota in Remote Alpine Lakes. Frontiers in microbiology 10, 1714-1714. doi: 10.3389/fmicb.2019.01714 Jurgens, G., Glöckner, F.-O., Amann, R., Saano, A., Montonen, L., Likolammi, M., et al. (2000). Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization11The sequences of environmental Archaea from freshwater SSU rDNA VAL clones obtained in this study have been submitted to the DDBJ/EMBL/GenBank database under accession numbers AJ131263–AJ131278 and AJ131311–AJ131322. FEMS Microbiology Ecology 34(1), 45-56. doi: https://doi.org/10.1016/S0168- 6496(00)00073-8. Katoh, K., Asimenos, G., and Toh, H. (2009). "Multiple alignment of DNA sequences with MAFFT," in Bioinformatics for DNA sequence analysis. Springer), 39-64. Kiersztyn, B., Chróst, R., Kaliński, T., Siuda, W., Bukowska, A., Kowalczyk, G., et al. (2019). Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Scientific reports 9(1), 11144-11144. doi: 10.1038/s41598-019-47577-8. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology 31(9), 814-821. doi: 10.1038/nbt.2676. Larson, G., and Schaetzl, R.J.J.o.G.L.R. (2001). Origin and evolution of the Great Lakes. 27(4), 518-546. Letunic, I., and Bork, P.J.B. (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. 23(1), 127-128. Liu, S., Wang, H., Tian, P., Yao, X., Sun, H., Wang, Q., et al. (2020). Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biology and Biochemistry 144, 107763. doi: https://doi.org/10.1016/j.soilbio.2020.107763. Lovelock, J.E., and Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. 26(1‐2), 2-10. doi: 10.1111/j.2153- 3490.1974.tb01946.x. Morris, J.J., Lenski, R.E., and Zinser, E.R.J.M. (2012). The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. 3(2) Moser, K.A., Baron, J.S., Brahney, J., Oleksy, I.A., Saros, J.E., Hundey, E.J., et al. (2019). Mountain lakes: Eyes on global environmental change. Global and Planetary Change 178, 77-95. doi: https://doi.org/10.1016/j.gloplacha.2019.04.001. Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J., et al. (2007). The vegan package. Community ecology package 10(631-637), 719. Oppenheim, V.J.A.J.o.S. (1947). Structural evolution of the South Américan Andes. 245(3), 158-174. Paver, S.F., Newton, R.J., and Coleman, M.L. (2020). Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry. Environmental microbiology 22(1), 433-446. doi: 10.1111/1462-2920.14862. Pérez, G.R., and Restrepo, J.J.R. (2008). Fundamentos de limnología neotropical. Universidad de Antioquia. Peter, H., and Sommaruga, R. (2016). Shifts in diversity and function of lake bacterial communities upon glacier retreat. The ISME journal 10(7), 1545-1554. doi: 10.1038/ismej.2015.245. Picazo, A., Rochera, C., Villaescusa, J.A., Miralles-Lorenzo, J., Velázquez, D., Quesada, A., et al. (2019). Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. Frontiers in microbiology 10, 908-908. doi: 10.3389/fmicb.2019.00908. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2–approximately maximumlikelihood trees for large alignments. PloS one 5(3). R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/. Ren, Z., Qu, X., Peng, W., Yu, Y., and Zhang, M. (2019). Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. PeerJ 7, e7318. doi: 10.7717/peerj.7318. Ren, Z., Wang, F., Qu, X., Elser, J.J., Liu, Y., and Chu, L. (2017). Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams. 8(2319). doi: 10.3389/fmicb.2017.02319. Roguet, A., Laigle, G.S., Therial, C., Bressy, A., Soulignac, F., Catherine, A., et al. (2015). Neutral community model explains the bacterial community assembly in freshwater lakes. FEMS Microbiology Ecology 91(11). doi: 10.1093/femsec/fiv125. Röling, W.F.M., Van Breukelen, B.M., Bruggeman, F.J., and Westerhoff, H.V. (2007). Ecological control analysis: being (s) in control of mass flux and metabolite concentrations in anaerobic degradation processes. Environmental microbiology 9(2), 500-511. Romina Schiaffino, M., Unrein, F., Gasol, J.M., Massana, R., Balague, V., and Izaguirre, I. (2011). Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. 56(10), 1973-1991. doi: 10.1111/j.1365- 2427.2011.02628.x. Rozmarynowycz, M.J., Beall, B.F.N., Bullerjahn, G.S., Small, G.E., Sterner, R.W., Brovold, S.S., et al. (2019). Transitions in microbial communities along a 1600 km freshwater trophic gradient. Journal of Great Lakes Research 45(2), 263-276. doi: https://doi.org/10.1016/j.jglr.2019.01.004. Salcher, M.M., Pernthaler, J., Frater, N., and Posch, T. (2011). Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. 56(6), 2027-2039. doi: 10.4319/lo.2011.56.6.2027. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13(11), 2498-2504. doi: 10.1101/gr.1239303. Shen, M., Li, Q., Ren, M., Lin, Y., Wang, J., Chen, L., et al. (2019). Trophic Status Is Associated With Community Structure and Metabolic Potential of Planktonic Microbiota in Plateau Lakes. Frontiers in microbiology 10, 2560-2560. doi: 10.3389/fmicb.2019.02560. Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S.J.N.R.M. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. 8(11), 779-790. Sloan, W.T., Lunn, M., Woodcock, S., Head, I.M., Nee, S., and Curtis, T.P.J.E.m. (2006). Quantifying the roles of immigration and chance in shaping prokaryote community structure. 8(4), 732-740. Soininen, J.J.B. (2010). Species turnover along abiotic and biotic gradients: patterns in space equal patterns in time? 60(6), 433-439. Sokal, R.R.J.B. (1995). The principles and practice of statistics in biological research. 451-554. Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., et al. (2015). Ocean plankton. Structure and function of the global ocean microbiome. Science 348(6237), 1261359. doi: 10.1126/science.1261359. Tassi, F., Fazi, S., Rossetti, S., Pratesi, P., Ceccotti, M., Cabassi, J., et al. (2018). The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PloS one 13(3), e0193914-e0193914. doi: 10.1371/journal.pone.0193914. Toledo Jr, A.P.d., Talarico, M., Chinez, S.J., and Agudo, E.G. (1983). "A aplicação de modelos simplificados para a avaliação do processo da eutrofização em lagos e reservatórios tropicais"), 1-34 Vadrucci M, R., Barbone, E., Ungaro, N., Romano, A., and Bucci, R. (2017). Application of taxonomic and morpho-functional properties of phytoplankton communities to water quality assessment for artificial lakes in the Mediterranean Ecoregion. Journal of Plankton Research 39(3), 550-563. doi: doi.org/10.1093/plankt/fbx011. Van der Gucht, K., Vandekerckhove, T., Vloemans, N., Cousin, S., Muylaert, K., Sabbe, K., et al. (2005). Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53(2), 205-220. doi: 10.1016/j.femsec.2004.12.006. Van, V., and Van Valen, L. (1973). A new evolutionary law. Varela, L.J.P. (2008). La alta montaña de los Andes del norte: el páramo, un ecosistema antropogénico. 163, 85-95. Vila, I., and Mühlhauser, H.A.J.A.B.M.E. (1987). Dinâmica de lagos de altura, perspectivas de investigado n. 20, 95-103. Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., and van der Heijden, M.G.A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications 10(1), 4841. doi: 10.1038/s41467-019- 12798-y. Warnes, M.G.R., Bolker, B., Bonebakker, L., Gentleman, R., and Huber, W.J.V.R.P.T.f.P.D. (2016). Package ‘gplots’. Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3(2), 180-185. Yadav, A.N., Yadav, N., Kour, D., Kumar, A., Yadav, K., Kumar, A., et al. (2019). "Chapter 1 - Bacterial community composition in lakes," in Freshwater Microbiology, eds. S.A. Bandh, S. Shafi & N. Shameem. Academic Press), 1-71. Yang, J., Jiang, H., Wu, G., Liu, W., and Zhang, G. (2016). Distinct Factors Shape Aquatic and Sedimentary Microbial Community Structures in the Lakes of Western China. Frontiers in microbiology 7, 1782-1782. doi: 10.3389/fmicb.2016.01782. Yang, Y., Song, W., Lin, H., Wang, W., Du, L., and Xing, W. (2018). Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ Int 116, 60-73. doi: 10.1016/j.envint.2018.04.011. Zeng, Q., and Rodrigo, A. (2018). Neutral models of short-term microbiome dynamics with host subpopulation structure and migration limitation. Microbiome 6(1), 80. doi: 10.1186/s40168-018-0464-x Zhou, J., Song, X., Zhang, C.-Y., Chen, G.-F., Lao, Y.-M., Jin, H., et al. (2018). Distribution Patterns of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea. Microbial Ecology 76(3), 592-609. doi: 10.1007/s00248- 018-1150-z. Zhu, C., Zhang, J., Nawaz, M.Z., Mahboob, S., Al-Ghanim, K.A., Khan, I.A., et al. (2019). Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. Science of The Total Environment 669, 29-40. doi: https://doi.org/10.1016/j.scitotenv.2019.03.087. Copyright (c) 2020 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (99 páginas) : ilustraciones, tablas, figuras. application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ciencias Tunja Maestría en Ciencias Biológicas
spellingShingle Comunidades bacterianas
Diversidad bacteriana
Biología acuática - Lago de Tota (Boyacá, Colombia)
Cuerpos de agua - Lago de Tota (Boyacá, Colombia)
Maestría en Ciencias Biológicas - Tesis y disertaciones académicas
Forero Pineda, Nicolás
Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title_full Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title_fullStr Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title_full_unstemmed Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title_short Análisis de la estructura y potencial funcional del bucle bacteriano del Lago de Tota y su comparación con lagos de distribución mundial
title_sort analisis de la estructura y potencial funcional del bucle bacteriano del lago de tota y su comparacion con lagos de distribucion mundial
topic Comunidades bacterianas
Diversidad bacteriana
Biología acuática - Lago de Tota (Boyacá, Colombia)
Cuerpos de agua - Lago de Tota (Boyacá, Colombia)
Maestría en Ciencias Biológicas - Tesis y disertaciones académicas
url http://repositorio.uptc.edu.co/handle/001/3683
work_keys_str_mv AT foreropinedanicolas analisisdelaestructuraypotencialfuncionaldelbuclebacterianodellagodetotaysucomparacionconlagosdedistribucionmundial