Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales
Spa: El presente trabajo plantea la conceptualización e implementación de la calidad del agua superficial que permitirá simular la variación temporal de especies de carbono orgánico (como fitoplancton), carbono inorgánico, fósforo y nitrógeno, materia orgánica y oxígeno disuelto, en lagos andinos y...
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Maestría |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2021
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/3686 |
_version_ | 1801705863152402432 |
---|---|
author | Pedroza Ramos, Adriana |
author2 | Aranguren Riaño, Nelson Javier |
author_facet | Aranguren Riaño, Nelson Javier Pedroza Ramos, Adriana |
author_sort | Pedroza Ramos, Adriana |
collection | DSpace |
description | Spa: El presente trabajo plantea la conceptualización e implementación de la calidad del agua superficial que permitirá simular la variación temporal de especies de carbono orgánico (como fitoplancton), carbono inorgánico, fósforo y nitrógeno, materia orgánica y oxígeno disuelto, en lagos andinos y predecir su estado de eutrofización asociado. Este estudio contribuirá para la toma de decisiones frente a distintos escenarios de control y operación del recurso hídrico. |
format | Trabajo de grado - Maestría |
id | repositorio.uptc.edu.co-001-3686 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2021 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-36862022-05-03T22:11:04Z Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales Pedroza Ramos, Adriana Aranguren Riaño, Nelson Javier Comunidades bióticas Calidad del agua Ecosistemas acuáticos Fitoplancton Lagos Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Spa: El presente trabajo plantea la conceptualización e implementación de la calidad del agua superficial que permitirá simular la variación temporal de especies de carbono orgánico (como fitoplancton), carbono inorgánico, fósforo y nitrógeno, materia orgánica y oxígeno disuelto, en lagos andinos y predecir su estado de eutrofización asociado. Este estudio contribuirá para la toma de decisiones frente a distintos escenarios de control y operación del recurso hídrico. Maestría Magister en Ciencias Biológicas 2021-08-19T15:43:39Z 2021-08-19T15:43:39Z 2021 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 Pedroza Ramos, A. (2021). Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja http://repositorio.uptc.edu.co/handle/001/3686 http://repositorio.uptc.edu.co/handle/001/3686 spa Aranguren-Riaño, N. J., Guisande, C., Shurin, J. B., Jones, N. T., Barreiro, A., & Duque, S. R. (2018). Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia, 187(3), 719– 730. https://doi.org/10.1007/s00442-018-4130-6 Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanene, R., & Muotka, T. (2012). Distance decay of similarity in freshwater communities : do macro- and microorganisms follow the same rules ? Global Ecology and Biogeography, 21, 365–375. https://doi.org/10.1111/j.1466-8238.2011.00681.x Barta, B., Mouillet, C., Espinosa, R., Andino, P., Jacobsen, D., & Christoffersen, K. S. (2017). Glacial-fed and páramo lake ecosystems in the tropical high Andes. Hydrobiologia, 813, 19–32. https://doi.org/10.1007/s10750-017-3428-4 Bellinger, E. G., & Sigee, D. C. (2015). Freshwater Algae: Identification and Use as Bioindicators. (J. Wiley & S. Inc, Eds.) (Second Edi). Bhatt, J. P., Manish, K., & Pandit, M. K. (2012). Elevational Gradients in Fish Diversity in the Himalaya : Water Discharge Is the Key Driver of Distribution Patterns. PLoS ONE, 7(9), 1–11. https://doi.org/10.1371/journal.pone.0046237 Bicudo, C. E. de M., & Menezes, M. (2017). Gêneros de algas de águas continentais do Brasil: chave de identificação e descrições (Terceira E). São Carlos: RiMa. Boltovskoy, D. (1995). Colección de plancton. In E. . Lopretto & G. Tell (Eds.), Ecosistemas de aguas continentales: metodologías para su estudio (Ediciones, pp. 271–295) Borges, K., Teresa, F. B., Ludgero, G., Huszar, V., & Nabout, J. (2016). Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research, 38(5), 1334–1346. https://doi.org/10.1093/plankt/fbw062. Boxshall, G. A., & Halsey, S. h. (2004). An Introduction to Copepod Diversity. London: Ray Society Briand, J. F., Leboulanger, C., Humbert, J. F., Bernard, C., & Dufour, P. (2004). Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? Journal of Phycology, 40(2), 231– 238. https://doi.org/10.1111/j.1529-8817.2004.03118.x Brown, J. H., & Brian, A. M. (1989). Macroecology : The Division of Food and Space Among Species on Continents. Science, 243(4895), 1145–1150. https://doi.org/10.1126/science.243.4895.1145 Burford, M. A., & O’Donohue, M. J. (2006). A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology, 51(5), 973–982. https://doi.org/10.1111/j.1365-2427.2006.01536.x Burns, C. W., & Galbraith, L. M. (2007). Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research, 29(2), 127–139. https://doi.org/10.1093/plankt/fbm001 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303.QIIME Caraballo, P., Forsberg, B. R., & Leite, R. G. (2012). Papel trófico del microbial loop en un lago de inundación en la amazonía central. Acta Biológica Colombiana, 17(1), 103–116 Dallas, T., & Drake, J. M. (2014). Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere, 5(9), Article 104. https://doi.org/10.1890/ES14-00071.1 De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., … Declerck, S. A. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15(7), 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x de Paggi, S. J., & Koste, W. (1995). Additions to the Checklist of Rotifers of the Superorder Monogononta Recorded from Neotropis. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 80(1), 133–140. https://doi.org/10.1002/iroh.19950800116 Dodds, W. K., Bruckerhoff, L., Batzer, D., Schechner, A., Pennock, C., Renner, E., … Grieger, S. (2019). The freshwater biome gradient framework : predicting macroscale properties based on latitude , altitude , and precipitation. Ecosphere, 10, 1–33. https://doi.org/10.1002/ecs2.2786 Donato-Rondon, J. C. (2001). Fitoplancton de los Lagos Andinos del Norte de Sudamérica (Colombia) (Editora Gu). Bogotá: Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Donato, J., González, L., & Rodríguez, C. (1996). Ecología de dos sistemas acuáticos de páramo (Guadalupe). Bogotá: Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Echenique, R. O., Nuñez-Avellaneda, M., & Duque, S. R. (2004). CHLOROCOCCALES DE LA AMAZONIA COLOMBIANA I : Chlorellaceae y Scenedesmaceae Chlorococcales of the Colombia Amazonia I : Chlorellaceae and Scenedesmaceae. Caldasia, 26(1), 37–51. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194– 2200. https://doi.org/10.1093/bioinformatics/btr381 El Moor-Lourerio, L. M. A. (1997). Manual de identificação de cladóceros límnicos do Brasil (EDITORA UN). Universidade Católica de Brasília. Fraisse, S., Bormans, M., & Lagadeuc, Y. (2013). Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquatic Ecology, 47(3), 315–327. https://doi.org/10.1007/s10452-013-9446-z Gaston, K. J. (1994). Rarity (Population). London: Chapman & Hall. Gaviria, S., & Aranguren-Riaño, N. (2003). Guia de laboratorio para identificación de Cladóceros (Anomopoda y Ctenopoda) y Copépodos (Calanoida y Cyclopoida). Tunja. Gaviria, S., & Aranguren-Riaño, N. (2019). Continental copepods ( Crustacea : Hexanauplia ) of Colombia : revision and additions to the inventory. Biota Colombiana, 20(1), 50– 74. https://doi.org/10.21068/c2019.v20n01a04 Gillooly, J., & Dodson, S. (2000). Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography, 45(1), 22–30. https://doi.org/10.4319/lo.2000.45.1.0022 Glockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000 González, A. del P., Aranguren- Riaño, N., & Gaviria, S. (2008). Cambios en la estructura de Boeckella gracilis (Crustacea, Centropagidae) en el plancton del Lago de Tota, Boyacá-Colombia. Acta Biologica Colombiana, 13(2), 61–72. Henriques-Silva, R., Pinel-Alloul, B., & Peres-Neto, P. (2016). Climate , history and lifehistory strategies interact in explaining differential macroecological patterns in freshwater zooplankton. Global Ecology and Biogeography, 25(12), 1454–1465. https://doi.org/10.1111/geb.12505 Hessen, D., Faafeng, B., Smith, V., Bakkestuen, V., & Walseng, B. (2006). Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology, 87(2), 433–443. https://doi.org/10.1890/05-0352 Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163(2), 192–211. https://doi.org/10.1086/381004 Hobæk, A., Manca, M., & Andersen, T. (2002). Factors influencing species richness in lacustrine zooplankton. Acta Oecologia, 23, 155–163. https://doi.org//10.1016/S1146- 609X(02)01147-5 Jankowski, T., & Weyhenmeyer, G. A. (2006). The role of spatial scale and area in determining richness-altitude gradients in Swedish lake phytoplankton communities. OIKOS, 115(3), 433–442. https://doi.org//10.1111/j.2006.0030-1299.15295.x Kibirige, I., Perissinotto, R., & Nozais, C. (2002). Alternative food sources of zooplankton in a temporarily-open estuary: evidence from δ13C and δ15N. Journal of Plankton Research, 24(10), 1089–1095. https://doi.org/10.1093/plankt/24.10.1089 Kokociński, M., & Soininen, J. (2012). Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology, 47(1), 12–21. https://doi.org/10.1080/09670262.2011.645216 Korhonen, J. J., Wang, J., & Soininen, J. (2011). Productivity-Diversity Relationships in Lake Plankton Communities. PLoS ONE, 6(8), e22041. https://doi.org/10.1371/journal.pone.0022041 Körner, C. (2007). The use of ‘ altitude ’ in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006 Koste, W. (1978a). Rotatoria, Die Rädertiere Mitteleuropas (I. Texband). Berlin: Gebrüder Borntraeger. Koste, W. (1978b). Rotatoria, Die Rädertiere Mitteleuropas (II. Textba). Berlin: Gebrüder Borntraeger. Kotov, A. A., & Fuentes-Reinés, J. M. (2015). An annotated checklist of the Cladocera (Crustacea: Branchiopoda) of Colombia. Zootaxa, 4044(4), 493–510. https://doi.org/10.11646/zootaxa.4044.4.2 Külköylüglu, O., Sari, N., Akdemir, D., Yavuzatmaca, M., & Altinbag, C. (2012). Distribution of Sexual and Asexual Ostracoda (Crustacea) from Different Altitudinal Ranges in the Ordu Region. High Altitude Medicine & Biology, 13(2), 126–137. https://doi.org/10.1089/ham.2011.1111 Legendre, P., & Andersson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1–24. https://doi.org/10.1890/0012- 9615(1999)069[0001:DBRATM]2.0.CO;2 Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data, 2001(July), 271–280. https://doi.org/10.1007/s004420100716 Legendre, P., & Legendre, L. (2012). Numerical Ecology (Third Engl). Elsevier. Legendre, P., Oksanen, J., & Braak, C. J. F. (2011). Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2, 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., … Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461- 0248.2004.00608.x Lewis, W. M., & Wendula, R. (1982). Phytoplankton composition and morphology in Lake Valencia, Venezuela. Int. Revue Ges. Hydrobiol., 67(3), 297–322. Lindeman, R. L. (1942). The trophic-dynamic aspect o f ecology. Ecology, 23(4), 399–417. https://doi.org/10.2307/1930126 Lomolino, M. (2001). Elevation gradients of species-density : historical and prospective views. Global Ecology and Biogeography, 10(1), 3–13. https://doi.org//10.1046/j.1466- 822x.2001.00229.x Maldonado-Ocampo, A., Ortega-Lara, J. S., Usma Oviedo, G., Galvis Vergara, Francisco Antonio Villa-Navarro, L., Vásquez Gamboa, S., Prada-Pedreros, C., & Ar 69–85. https://doi.org/10.15446/rcdg.v22n2.37018dila Rodríguez. (2005). Peces De Los Andes De Colombia Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Retrieved from Gu, B., Schelske, C. L., & Waters, M. N. (2011). Patterns and controls of seasonal variability of carbon stable isotopes of particulate organic matter in lakes. Oecologia, 165(4), 1083–1094. https://doi.org/10.1007/s00442-010-1888-6 Hakspiel-Segura, C., Canosa-Torrado, A., & Niño-García, J. P. (2015). Variación espacial y temporal del bacterioplancton en un reservorio de alta montaña en los Andes Colombianos. Hidrobiologica, 25(1), 62–73. Hobbie, J. E. (1991). Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia., 229, 169–180. Judd, K., Crump, B., & Kling, G. (2006). Variation in dissolved organic matter controls bacterial production and community composition. Ecology, 87(8), 2068–2079. Karlsson, J., Jonsson, A., & Jansson, M. (2001). Bacterioplankton production in lakes along an altitude gradient in the Subarctic North of Sweden. Microbial Ecology, 42(3), 372– 382. https://doi.org/10.1007/s00248-001-0009-9 Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676 Lindeman, R. L. (1942). The trophic-dynamic aspect o f ecology. Ecology, 23(4), 399–417. https://doi.org/10.2307/1930126 Margalef, R. (1983). Limnología (Ediciones). Barcelona. Meneses-Ortegón, L., & Herrera-Martínez, Y. (2015). Bacterioplancton de tres humedales altoandinos de la cordillera Oriental de Colombia. Biota Colombiana, 16(1), 1–10. Mladenov, N., Pulido-Villena, E., Morales-Baquero, R., Ortega-Retuerta, E., Sommaruga, R., & Reche, I. (2008). Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity. Journal of Geophysical Research: Biogeosciences, 113(G00D1), 2-1O. https://doi.org/10.1029/2008jg000699 Nürnberg, G. K., & Shaw, M. (1999). Productivity of clear and humic lakes: Nutrients, phytoplankton, bacteria. Hydrobiologia, 382(1–3), 97–112. Pacheco, F. S., Roland, F., & Downing, J. A. (2014). Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1), 41–48. https://doi.org/10.5268/IW-4.1.614 Pinilla, G. A., Canosa, A., Vargas, A., Gavilán, M., & López, L. (2007). Acoplamiento entre las comunidades planctonicas de un lago amazonico de aguas claras (lago Boa, Colombia). Limnetica, 26(1), 53–65. Prairie, Y. T. (2008). Carbocentric limnology : looking back , looking forward 1. Canadian Journal of Fisheries and Aquatic Sciences, 65(3), 543–548. https://doi.org/10.1139/F08- 011 Rejas, D., Muylaert, K., & De Meester, L. (2005). Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia). Revista de Biologia Tropical, 53(1–2), 85–96. Ricaurte, L. F., Patiño, J. E., Restrepo, D., Arias-G, J. C., Acevedo, O., Aponte, C., … Junk, W. (2019). A Classification System for Colombian Wetlands : an Essential Step Forward in Open Environmental Policy-Making. Wetlands, 1–20. https://doi.org//10.1007/s13157-019-01149-8 GENERAL WETLAND SCIENCE A Santiago, L. S., Silvera, K., Andrade, L. J., & Dawson, T. E. (2005). El uso de isótopos estables en biología tropical. Interciencia, 30(9), 536–542. Schulhof, M. A., Allen, A. E., Allen, E. E., Mladenov, N., McCrow, J. P., Jones, N. T., … Shurin, J. B. (2020). Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Molecular Ecology, 29(11), 2080– 2093. https://doi.org/10.1111/mec.15469 Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52(3), 1208–1219. https://doi.org/10.4319/lo.2007.52.3.1208 Sommaruga, R., Psenner, R., Schafferer, E., Koinig, K. A., & Sommaruga-Wögrath, S. (1999). Dissolved Organic Carbon Concentration and Phytoplankton Biomass in Highmountain Lakes of the Austrian Alps: Potential Effect of Climatic Warming on UV Underwater Attenuation. Arctic, Antarctic, and Alpine Research, 31(3), 247–253. https://doi.org/10.1080/15230430.1999.12003305 Torres-Bejarano, A. M., Duque, S. R., & Caraballo, P. (2014). The trophic role of zooplankton in a floodplain lake of Colombian amazon, through stable isotopes analysis. Caldasia, 36(2), 331–344. https://doi.org/10.15446/caldasia/v36n2.47488 Webster, K. E., Soranno, P. A., Baines, S. B., Kratz, T. K., Bowser, C. J., Dillon, P. J., … Hecky, R. E. (2000). Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshwater Biology, 43(3), 499–515. https://doi.org/10.1046/j.1365-2427.2000.00571.x Wetzel, R. (1992). Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229(1), 181–198. https://doi.org/10.1007/BF00007000 Wetzel, R. (2001). Limnology, Lakes and River (Third Edit). San Diego: Academic Press. Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3_part_2), 795–803. https://doi.org/10.4319/lo.1999.44.3_part_2.0795 Copyright (c) 2021 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea ( xi, 157 páginas) : ilustraciones, figuras, tablas. application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ciencias Tunja Maestría en Ciencias Biológicas |
spellingShingle | Comunidades bióticas Calidad del agua Ecosistemas acuáticos Fitoplancton Lagos Maestría en Ciencias Biológicas - Tesis y disertaciones académicas Pedroza Ramos, Adriana Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title | Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title_full | Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title_fullStr | Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title_full_unstemmed | Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title_short | Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales |
title_sort | analisis de la importancia del carbono organico disuelto en lagos andinos tropicales |
topic | Comunidades bióticas Calidad del agua Ecosistemas acuáticos Fitoplancton Lagos Maestría en Ciencias Biológicas - Tesis y disertaciones académicas |
url | http://repositorio.uptc.edu.co/handle/001/3686 |
work_keys_str_mv | AT pedrozaramosadriana analisisdelaimportanciadelcarbonoorganicodisueltoenlagosandinostropicales |