Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita
Spa: El trabajo de investigación presenta los resultados obtenidos al evaluar las propiedades estructurales, mecánicas, térmicas, eléctricas y magnéticas de un material compuesto a base de resina de poliéster termoestable y polvos de magnetita, en función de la concentración, tamaño y alineación de...
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Doctorado |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2021
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/3692 |
_version_ | 1801705880555618304 |
---|---|
author | Lara González, Luis Angel |
author2 | Pineda Triana, Yaneth |
author_facet | Pineda Triana, Yaneth Lara González, Luis Angel |
author_sort | Lara González, Luis Angel |
collection | DSpace |
description | Spa: El trabajo de investigación presenta los resultados obtenidos al evaluar las propiedades estructurales, mecánicas, térmicas, eléctricas y magnéticas de un material compuesto a base de resina de poliéster termoestable y polvos de magnetita, en función de la concentración, tamaño y alineación de las partículas de polvo utilizadas como relleno funcional en el refuerzo. |
format | Trabajo de grado - Doctorado |
id | repositorio.uptc.edu.co-001-3692 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2021 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-36922023-03-30T22:26:55Z Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita Lara González, Luis Angel Pineda Triana, Yaneth Peña Rodríguez, Gabriel Residuos industriales Productos de residuos Magnetita Ciencia de los materiales Gomas y resinas Revestimientos protectores Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas Spa: El trabajo de investigación presenta los resultados obtenidos al evaluar las propiedades estructurales, mecánicas, térmicas, eléctricas y magnéticas de un material compuesto a base de resina de poliéster termoestable y polvos de magnetita, en función de la concentración, tamaño y alineación de las partículas de polvo utilizadas como relleno funcional en el refuerzo. Doctorado Doctorado en Ingeniería y Ciencia de los Materiales 2021-08-19T22:32:27Z 2021-08-19T22:32:27Z 2019 Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TD http://purl.org/coar/version/c_970fb48d4fbd8a85 Lara González, L. A. (2019). Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita. (Tesis doctoral). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3692 http://repositorio.uptc.edu.co/handle/001/3692 spa O. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Eur. Polym. J., vol. 47, no. 4, pp. 542–559, Apr. 2011. A. M. Schmidt, “Thermoresponsive magnetic colloids,” Colloid Polym. Sci., vol. 285, no. 9, pp. 953–966, 2007. A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Mater. Today, vol. 17, no. 4, pp. 163–174, 2014. D. C. F. Chan, D. B. Kirpotin, and P. A. Bunn, “Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer,” J. Magn. Magn. Mater., vol. 122, no. 1, pp. 374–378, 1993 G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, “The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia,” J. Phys. Condens. Matter, vol. 18, no. 38, p. S2935, 2006. D. Chicot et al., “Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO·OH) by instrumented indentation and molecular dynamics analysis,” Mater. Chem. Phys., vol. 129, no. 3, pp. 862–870, Oct. 2011. B. Weidenfeller, M. Höfer, and F. Schilling, “Thermal and electrical properties of magnetite filled polymers,” Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1041–1053, Aug. 2002. X. Liu et al., “Preparation and characterization of superparamagnetic functional polymeric microparticles,” China Particuology, vol. 1, no. 2, pp. 76–79, Jun. 2003 X. . Li, S. Takahashi, K. Watanabe, Y. Kikuchi, and M. Koishi, “Fabrication and characteristics of Fe3O4-polymer composite particles by hybridization,” Powder Technol., vol. 133, no. 1–3, pp. 156–163, Jul. 2003. G. C. Papaefthymiou, “Nanoparticle magnetism,” Nano Today, vol. 4, pp. 438–447, 2009. R. Mincheva et al., “Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning,” Eur. Polym. J., vol. 44, no. 3, pp. 615–627, Mar. 2008. A. S. for T. and M. C. D. on E. and E. I. Materials, Standard test methods for DC resistance or conductance of insulating materials. ASTM International, 2007. Quantum Design, “Vibrating Sample Magnetometer ( VSM ) Option User ’s Manual,” no. 1096, p. 122, 2011. M. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum., vol. 65, no. 12, pp. 3856–3859, 1994. B. D. Cullity, Answers to problems: Elements of X-ray diffraction. Addison-Wesley Publishing Company, 1978. R. C. C. Surichaqui, “FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE INGENIERÍA FÍSICA.” UNIVERSIDAD NACIONAL DE INGENIERÍA, 2013. T. E. Mitchell, “High Voltage Electron Microscopy for Microstructural Analysis,” in Microstructural Analysis, Springer, 1973, pp. 125–152. S. D. Thoppul, J. Finegan, and R. F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 301–329, Mar. 2009. M. A. Oladunjoye and O. A. Sanuade, “Thermal diffusivity, thermal effusivity and specific heat of soils in Olorunsogo Powerplant, southwestern Nigeria,” Int. J. Res. Rev. Appl. Sci., vol. 13, no. 2, pp. 502–521, 2012. X. Ma, S. Omer, W. Zhang, and S. B. Riffat, “Thermal conductivity measurement of two microencapsulated phase change slurries,” Int. J. Low Carbon Technol., vol. 3, no. 4, pp. 245–253, 2008. S. E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,” Rev. Sci. Instrum., vol. 62, no. 3, pp. 797–804, 1991. M. Kallio, The elastic and damping properties of magnetorheological elastomers. 2005. H. Nagai et al., “Thermal conductivity measurement of molten silicon by a hot-disk method in short-duration microgravity environments,” Jpn. J. Appl. Phys., vol. 39, no. 3R, p. 1405, 2000. F. Enrique and S. Tacumá, “Producción y caracterización de materiales compuestos con matrices de resina epoxi reforzados con ripio de llanta y magnetita en diferentes proporciones Producción y caracterización de materiales compuestos con matrices de resina epoxi reforzados con ripi,” 2018. D. M. Aljure García, “Análisis estructural y electrónico de la perovskita doble compleja de LaBiFe2O6.” Universidad Nacional de Colombia-Sede Bogotá. C. R. S. Tool, “VersaLab Free Disign Quantum,” Trans. ASME J. Appl. Mech., no. October, pp. 1–47, 2006. W. A. Wooster, Crystal structure, vol. 236, no. 5345. 1972. H. R. Rollinson, “Ilmenite-magnetite geothermometry in trondhjemites from the Scourian complex of NW Scotland,” Mineral. Mag., vol. 43, no. 325, pp. 165–170, 1979. M. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, and V. Spasojević, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles,” J. Alloys Compd., vol. 509, no. 28, pp. 7639–7644, 2011. A. Mücke and A. R. Cabral, “Redox and nonredox reactions of magnetite and hematite in rocks,” Chemie der Erde-Geochemistry, vol. 65, no. 3, pp. 271–278, 2005. T. Otake, D. J. Wesolowski, L. M. Anovitz, L. F. Allard, and H. Ohmoto, “Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions,” Earth Planet. Sci. Lett., vol. 257, no. 1–2, pp. 60–70, 2007. A. Sami, E. David, and M. Fréchette, “Procedure for evaluating the crystallinity from X-ray diffraction scans of high and low density polyethylene/SiO2 composites,” Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, pp. 2–5, 2010 C. Ruddy, E. Ahearne, and G. Byrne, “A review of magnetorheological elastomers: properties and applications,” … Sci. Res. http//www. ucd. ie …, 2012. N. S. Murthy and H. Minor, “Analysis of poorly crystallized polymers using resolution enhanced X-ray diffraction scans,” Polymer (Guildf)., vol. 36, no. 13, pp. 2499–2504, 1995. C. Aguilar, “Análisis del tamaño de cristalita en aleaciones Cu-Mo procesadas por aleado mecánico ANALISIS DEL TAMAÑO DE CRISTALITA EN ALEACIONES Cu-,” no. January 2009, 2016. P. E. Gharagozloo and K. E. Goodson, “Aggregate fractal dimensions and thermal conduction in nanofluids,” J. Appl. Phys., vol. 108, no. 7, p. 74309, 2010. L. Téllez, A. Orlando, and G. Posada, “Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones Production and characterization of magnetite in different proportions,” vol. 22, no. 44, 2019. K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat, and W. Lerdwijitjarud, “Control of hematite nanoparticle size and shape by the chemical precipitation method,” Powder Technol., vol. 249, pp. 353–359, 2013. A. International, ASTM D638-14, Standard Test Method for Tensile Properties of Plastics. ASTM International, 2015. A. I. A. D695-15, “Standard test method for compressive properties of rigid plastics.” Pennsylvania United States, 2015. M. A. Munawar et al., “Investigation of functional, physical, mechanical and thermal properties of TiO 2 embedded polyester hybrid composites: A design of experiment (DoE) study,” Prog. Nat. Sci. Mater. Int., vol. 28, no. 3, pp. 266–274, 2018. B. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2010. V. K. Patel and N. Rawat, “Physico-mechanical properties of sustainable SagwanTeak Wood Flour/Polyester Composites with/without gum rosin,” Sustain. Mater. Technol., vol. 13, no. March, pp. 1–8, 2017. Z. Varga, G. Filipcsei, and M. Zrínyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer (Guildf)., vol. 47, no. 1, pp. 227–233, Jan. 2006. P. Baldión et al., “Estudio comparativo de las propiedades mecanicas de diferentes tipos de resina compuesta,” no. March, pp. 1–5, 2017. G. Farzi, M. Lezgy-nazargah, A. Imani, M. Eidi, and M. Darabi, “Mechanical , thermal and microstructural properties of epoxy-OAT composites,” Constr. Build. Mater., vol. 197, pp. 12–20, 2019. R. Baptista, A. Mendão, M. Guedes, and R. Marat-Mendes, “An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler,” Procedia Struct. Integr., vol. 1, pp. 74–81, 2016. H. Tabatabai, M. Janbaz, and A. Nabizadeh, “Mechanical and thermo-gravimetric properties of unsaturated polyester resin blended with FGD gypsum,” Constr. Build. Mater., vol. 163, pp. 438–445, 2018. B. Abu-Jdayil, A. H. I. Mourad, and A. Hussain, “Investigation on the mechanical behavior of polyester-scrap tire composites,” Constr. Build. Mater., vol. 127, pp. 896– 903, 2016. J. Khedari, B. Suttisonk, N. Pratinthong, and J. Hirunlabh, “New lightweight composite construction materials with low thermal conductivity,” Cem. Concr. Compos., vol. 23, no. 1, pp. 65–70, 2001. J. C. Morel, A. Mesbah, M. Oggero, and P. Walker, “Building houses with local materials: means to drastically reduce the environmental impact of construction,” Build. Environ., vol. 36, no. 10, pp. 1119–1126, 2001. Y. M. De Moraes et al., “Mechanical behavior of mallow fabric reinforced polyester matrix composites,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 515–519, 2018. A.-H. I. Mourad, N. Bekheet, A. El-Butch, L. Abdel-Latif, and D. Nafee, “Effect of die drawing process on the mechanical behaviour of polypropylene,” in Key Engineering Materials, 2004, vol. 261, pp. 1677–1682. Y. H. Chen, “Thermal properties of nanocrystalline goethite, magnetite, and maghemite,” J. Alloys Compd., vol. 553, pp. 194–198, 2013. M. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, “Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 227–235, Jan. 2007. M. Aliahmad and N. Nasiri Moghaddam, “Synthesis of maghemite (γ-Fe 2 O 3 ) nanoparticles by thermal-decomposition of magnetite (Fe 3 O 4 ) nanoparticles,” Mater. Sci. Pol., vol. 31, no. 2, pp. 264–268, 2013. M. V. F. Ferreira et al., “Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 396–400, 2017 C. A. Boynard and J. R. M. D’Almeida, “Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)-polyester composite materials,” Polym. - Plast. Technol. Eng., vol. 39, no. 3, pp. 489–499, 2000. I. Piñeres, N. Torres, J. Trochéz, H. Núñez, and E. Ortiz, “Análisis térmico complementario y simultáneo dsc-tga en CSH2PO4,” vol. 1, no. 1, pp. 117–119, 2009. D. Padalia, U. C. Johri, and M. G. H. Zaidi, “Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites,” Phys. B Condens. Matter, vol. 407, no. 5, pp. 838–843, Mar. 2012 S. N. Monteiro, V. Calado, R. J. S. Rodriguez, and F. M. Margem, “Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers–an Overview,” J. Mater. Res. Technol., vol. 1, no. 2, pp. 117– 126, 2012. L. M. Maldonado and G. P. Rodríguez, “Efecto de la concentración de residuos cerámicos odontológicos en las propiedades termofisicas de materiales compuestos a base de resinas de poliester,” Ing. Investig. y Desarro. I2+ D, vol. 14, no. 2, pp. 2–5, 2014. M. F. Viante, T. M. P. Zanela, A. Stoski, E. C. Muniz, and C. A. P. Almeida, “Magnetic microspheres composite from poly(ethylene terephthalate) (PET) waste: Synthesis and characterization,” J. Clean. Prod., vol. 198, pp. 979–986, 2018. Z. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3130, 1962. G. Peña-Rodríguez et al., “Efecto de la concentración de magnetita en la estructura, propiedades eléctricas y magnéticas de un material compuesto a base de resina de poliéster,” TecnoLógicas, vol. 21, no. 41, pp. 13–27, 2018. B. Weidenfeller, M. Anhalt, and W. Riehemann, “Variation of magnetic properties of composites filled with soft magnetic FeCoV particles by particle alignment in a magnetic field,” J. Magn. Magn. Mater., vol. 320, no. 14, pp. e362–e365, Jul. 2008. A. G. Pedroso, D. S. Rosa, and T. D. Z. Atvars, “Manufacture of sheets using postconsumer unsaturated polyester resin/glass fibre composites,” Prog. Rubber Plast. Recycl. Technol., vol. 18, no. 2, pp. 111–125, 2002. M. M. Selvi, P. Manimuthu, K. S. Kumar, and C. Venkateswaran, “Magnetodielectric properties of CoFe2O4-BaTiO 3 core-shell nanocomposite,” J. Magn. Magn. Mater., vol. 369, pp. 155–161, 2014. B. Zhou et al., “Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation,” Compos. Part A Appl. Sci. Manuf., vol. 90, pp. 410–416, 2016. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun., vol. 182, no. 4–6, pp. 273–279, 2000. P. S. Neelakanta, Handbook of electromagnetic materials: monolithic and composite versions and their applications. CRC press, 1995 I. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, “Magnetic and microwave absorbing properties of magnetitethermoplastic natural rubber nanocomposites,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3401–3409, 2010. P. Štefcová and M. Schatz, “Magnetic Silicone Rubbers,” Rubber Chem. Technol., vol. 56, no. 2, pp. 322–326, 1983. T. J. Fiske, H. S. Gokturk, and D. M. Kalyon, “Percolation in magnetic composites,” J. Mater. Sci., vol. 32, no. 20, pp. 5551–5560, 1997. J. Prado et al., “EFECTO DE LA TEMPERATURA DE DEPOSICIÓN SOBRE LA ESTRUCTURA Y RESPUESTA MAGNÉTICA DE PELÍCULAS DELGADAS DE FERRITAS DE NiZn.,” Rev. Colomb. Física, vol. 39, no. 2, 2007. L. A. Ramajo, A. A. Cristóbal, P. M. Botta, J. M. P. López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 388–393, 2009. L. Á. Lara G., “Effect of the acid degradation on the properties of polyester reinforced with glass fibers,” Ing. Investig. y Desarro., vol. 10, no. 1, pp. 64–70, 2010. Quiz José, “Magnetismo y Superconductividad en el material Ru-1222,” 2012. Z. Zhang et al., “Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO,” J. Phys. Condens. Matter, vol. 24, no. 21, p. 215404, 2012. Y. Lin, X. Liu, H. Yang, F. Wang, C. Liu, and X. Wang, “Laminated SrTiO 3 -Ni 0.8 Zn 0.2 Fe 2 O 4 magneto-dielectric composites for high frequency applications,” J. Alloys Compd., vol. 688, pp. 571–576, Dec. 2016. E. José et al., “FIGURAS DE LISSAJOUS,” 2013. H. Yang, L. Bai, Y. Lin, F. Wang, and T. Wang, “Magneto-dielectric laminated Ba(Fe0.5Nb0.5)O3-Bi0.2Y2.8Fe5O12 composites with high dielectric constant and high permeability,” Ceramics International, vol. 43, no. 3. Elsevier Ltd, pp. 2903– 2909, 15-Feb-2017. Y. Peng et al., “BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications,” J. Alloys Compd., vol. 630, pp. 48–53, 2015. M. L. S. Teo, L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, “Development of magneto-dielectric materials based on Li-ferrite ceramics: I. Densification behavior and microstructure development,” J. Alloys Compd., vol. 459, no. 1–2, pp. 557–566, 2008. H. Heuermann, “Calibration of a network analyzer without a thru connection for nonlinear and multiport measurements,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2505–2510, 2008. R. Khorshidi and A. Hassani, “Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite,” Mater. Des., vol. 52, pp. 999–1010, 2013. Z. Y. Shnean, “Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide,” Diyala J. Eng. Sci., vol. 5, no. 1, pp. 147–159, 2011. R. Chen, J. Cheng, and Y. Wei, “Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology,” J. Alloys Compd., vol. 520, pp. 266–271, Apr. 2012. L. Peponi, I. Navarro-Baena, and J. M. Kenny, “7 - Shape memory polymers: properties, synthesis and applications,” M. R. Aguilar and J. S. B. T.-S. P. and their A. Román, Eds. Woodhead Publishing, 2014, pp. 204–236. M. S. Boon and M. Mariatti, “Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design,” J. Magn. Magn. Mater., vol. 355, pp. 319–324, Apr. 2014. G. Schubert and P. Harrison, “Schubert , G ., and Harrison , P . ( 2015 ) Large-strain behaviour of Magneto- Rheological Elastomers.,” Polym. Test., vol. 42, no. February, pp. 122–134, 2015. J. Xu, B. Gao, H. Du, and F. Kang, “A statistical model for effective thermal conductivity of composite materials,” Int. J. Therm. Sci., vol. 104, pp. 348–356, 2016. J. Z. Xu, B. Z. Gao, and F. Y. Kang, “A reconstruction of Maxwell model for effective thermal conductivity of composite materials,” Appl. Therm. Eng., vol. 102, pp. 972– 979, 2016. A. O. Garzón Posada, F. Fajardo, D. Landínez, J. Roa, and G. Peña, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. September, pp. 57–61, 2017. I. D. M. Lagos and F. J. R. Ubarnes, “Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite,” TecnoLógicas, vol. 19, no. 36, pp. 63–76, 2018. Plasti Quimicas, “Resinas de Poliéster y Viniléster,” p. 12, 2007. E. Poliser and A. P-, “POLISER P-115 A,” pp. 1–2, 2014. A. Gil, “Resinas de poliéster,” p. 14, 2012. E. P. Wohlfarth and K. H. J. Buschow, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, vol. 2. Elsevier, 1980. J. Chatterjee, Y. Haik, and C.-J. Chen, “Size dependent magnetic properties of iron oxide nanoparticles,” J. Magn. Magn. Mater., vol. 257, pp. 113–118, 2003. M. R. Jolly, J. D. Carlson, and B. C. Muñoz, “A model of the behaviour of magnetorheological materials,” Smart Mater. Struct., vol. 5, pp. 607–614, 1999 Z. Varga, G. Filipcsei, and M. Zrínyi, “Smart composites with controlled anisotropy,” Polymer (Guildf)., vol. 46, no. 18, pp. 7779–7787, Aug. 2005 J. Ugelstad, T. Ellingsen, A. Berge, and O. B. Helgee, “Magnetic polymer particles and process for the preparation thereof.” Google Patents, 1987. E. Besoain, Mineralogía de arcillas de suelos, no. 60. Bib. Orton IICA/CATIE, 1985. L. G. García Pérez, “Magnetita en el cuerpo humano: consecuencias potenciales y caracterización básica de la Magnetita biogénica nanométrica,” 2013. A. O. Garzón Posada, “Síntesis y caracterización de un material compuesto a base de polietileno de alta densidad y magnetita pulverizada.” Universidad Nacional de Colombia, 2015. D. Thapa, V. R. Palkar, M. B. Kurup, and S. K. Malik, “Properties of magnetite nanoparticles synthesized through a novel chemical route,” Mater. Lett., vol. 58, no. 21, pp. 2692–2694, 2004. R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, 2003. W. D. Callister, Materials science and engineering-an introduction. John wiley & sons, 2007. C. Gómez, “Propiedades magnéticas de las arenas recientes de Portmán, Murcia.” Proyecto de titulación previo a la obtención del Título de Máster en Geofísica y Meteorología). Universidad Complutense de Madrid, Madrid, España, 2013. L. Carporzen, S. A. Gilder, and R. J. Hart, “Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa,” Earth Planet. Sci. Lett., vol. 251, no. 3–4, pp. 305–317, 2006. E. J. W. Verwey and P. W. Haayman, “Electronic conductivity and transition point of magnetite (‘Fe3O4’),” Physica, vol. 8, no. 9, pp. 979–987, 1941. M. Jackson, B. Moskowitz, and J. Bowles, “The magnetite Verwey transition,” IRM Q, vol. 20, pp. 1–11, 2011. J. P. Wright, A. M. T. Bell, and J. P. Attfield, “Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3O4,” Solid State Sci., vol. 2, no. 8, pp. 747–753, 2000. J. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, pp. 555–569, 2000. Z. Rigbi and L. Jilken, “The response of an elastomer filled with soft ferrite to mechanical and magnetic influences,” J. Magn. Magn. Mater., vol. 37, no. 3, pp. 267– 276, 1983. J. Rabinow, “The magnetic fluid clutch,” Am. Inst. Electr. Eng. Trans., vol. 67, no. 2, pp. 1308–1315, 1948. L. Chen, X. L. Gong, and W. H. Li, “Effect of carbon black on the mechanical performances of magnetorheological elastomers,” Polym. Test., vol. 27, pp. 340–345, 2008. J. Chatterjee, Y. Haik, and C.-J. Chen, “Size dependent magnetic properties of iron oxide nanoparticles,” J. Magn. Magn. Mater., vol. 257, no. 1, pp. 113–118, 2003. G. Schubert and P. Harrison, “Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations,” Polym. Test., vol. 42, pp. 122–134, Apr. 2015. T. Mitsumata, K. Ikeda, J. P. Gong, Y. Osada, D. Szabó, and M. Zrı́nyi, “Magnetism and compressive modulus of magnetic fluid containing gels,” J. Appl. Phys., vol. 85, no. 12, p. 8451, 1999. S. Abramchuk et al., “Novel highly elastic magnetic materials for dampers and seals: part II. Material behavior in a magnetic field,” Polym. Adv. Technol., vol. 18, no. 7, pp. 513–518, 2007. M. G. Rosato and D. V Rosato, Plastics design handbook. Springer Science & Business Media, 2013. W. F. Smith, A. Larena, J. M. Gil, and F. J. M. Gil, Fundamentos de la Ciencia e Ingeniería de Materiales. McGraw-Hill New York, 1998. J. Balcells, Interferencias electromagnéticas en sistemas electrónicos. Marcombo, 1992. K. W. Wagner, “Explanation of the dielectric fatigue phenomenon on the basis of Maxwell’s concept,” Ark. fur Electrotech., vol. 2, pp. 371–387, 1914. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3131, 1962. V. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys., vol. 416, no. 7, pp. 636–664, 1935. F. R. Schilling and G. M. Partzsch, “Quantifying partial melt fraction in the crust beneath the central Andes and the Tibetan Plateau,” Phys. Chem. Earth, Part A Solid Earth Geod., vol. 26, no. 4, pp. 239–246, 2001. A. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, 2017 C. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, 1999. T. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 351–369, 2016. A. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, 2017. C. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, 1999. T. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 351–369, 2016. S. Mishra and N. G. Shimpi, “Comparison of nano CaCO 3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” 2005. C. DeArmitt, Applied Plastics Engineering Handbook. Elsevier, 2011. X. C. Tong, Advanced materials for thermal management of electronic packaging, vol. 30. Springer Science & Business Media, 2011. Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci., vol. 36, no. 7, pp. 914–944, 2011. X. Huang, P. Jiang, and T. Tanaka, “A review of dielectric polymer composites with high thermal conductivity,” IEEE Electr. Insul. Mag., vol. 27, no. 4, 2011. M. Hu, D. Yu, and J. Wei, “Thermal conductivity determination of small polymer samples by differential scanning calorimetry,” Polym. Test., vol. 26, no. 3, pp. 333– 337, 2007. H. Chen et al., “Thermal conductivity of polymer-based composites: Fundamentals and applications,” Prog. Polym. Sci., vol. 59, pp. 41–85, 2016. N. Kucukdogan, L. Aydin, and M. Sutcu, “Theoretical and empirical thermal conductivity models of red mud filled polymer composites,” Thermochim. Acta, vol. 665, no. August 2017, pp. 76–84, 2018. I. H. Tavman, “Thermal and mechanical properties of aluminum powder‐filled high‐ density polyethylene composites,” J. Appl. Polym. Sci., vol. 62, no. 12, pp. 2161–2167, 1996. D. M. Bigg, “Thermal conductivity of heterophase polymer compositions,” in Thermal and electrical conductivity of polymer materials, Springer, 1995, pp. 1–30. J. C. M. Garnett, “Colours in metal glasses, in metallic films and in metallic solutions.—II,” Proc. R. Soc. Lond. A, vol. 76, no. 511, pp. 370–373, 1905. A. Mohaddespour, H. Abolghasemi, M. T. Mostaedi, and S. Habibzadeh, “A new model for estimation of the thermal conductivity of polymer/clay nanocomposites,” J. Appl. Polym. Sci., vol. 118, no. 2, pp. 1042–1050, 2010. L. Qian, X. Pang, J. Zhou, J. Yang, S. Lin, and D. Hui, “Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials,” Compos. Part B Eng., vol. 116, pp. 291–297, 2017. M. Shen, Y. Cui, J. He, and Y. Zhang, “Thermal conductivity model of filled polymer composites,” Int. J. Miner. Metall. Mater., vol. 18, no. 5, p. 623, 2011. R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys., vol. 23, no. 7, pp. 779–784, 1952. K. Pietrak and T. S. Winiewski, “A review of models for effective thermal conductivity of composite materials,” J. J. Power Technol., vol. 95, no. 1, pp. 14–24, 2015. R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962. J. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon press, 1881. S. C. Cheng and R. I. Vachon, “The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures,” Int. J. Heat Mass Transf., vol. 12, no. 3, pp. 249–264, 1969. B. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, 2004. T. B. Lewis and L. E. Nielsen, “Dynamic mechanical properties of particulate-filled composites,” J. Appl. Polym. Sci., vol. 14, no. 6, pp. 1449–1471, 1970. E. H. Kerner, “The elastic and thermo-elastic properties of composite media,” Proc. Phys. Soc. Sect. B, vol. 69, no. 8, p. 808, 1956. W. Patterson and A. Force, “The Halipin-Tsai Equsations: A Review,” vol. 16, no. 5, 1976. L. E. Nielsen, “Thermal conductivity of particulate‐filled polymers,” J. Appl. Polym. Sci., vol. 17, no. 12, pp. 3819–3820, 1973. Y. Agari, A. Ueda, and S. Nagai, “Thermal conductivity of a polymer composite,” J. Appl. Polym. Sci., vol. 49, no. 9, pp. 1625–1634, 1993. M. A. Pérez and M. Sánchez, “Fundamentos de la mecánica de los materiales compuestos,” Apl. Av. los Mater. compuestos en la obra Civ. y la Edif., pp. 19–50, 2014. S. Timoshenko, G. H. MacCullough, and others, “Elements of strength of materials,” 1949. L. E. Nielsen, “The thermal and electrical conductivity of two-phase systems,” Ind. Eng. Chem. Fundam., vol. 13, no. 1, pp. 17–20, 1974. E. Bedolla, J. Lemus, C. a León, and a Contreras, “SÍNTESIS Y CARACTERIZACIÓN DE UN MATERIAL COMPUESTO DE MATRIZ METÁLICA Mg-AZ91E / AlN,” 2010. D. Mongomery, “Diseño y análisis de experimentos,” Limusa Wiley, Segunda Edición, México, 2002. G. Schubert and P. Harrison, “Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations,” Polym. Test., vol. 42, pp. 122–134, 2015. M. Anhalt and B. Weidenfeller, “Magnetic properties of hybrid-soft magnetic composites,” Mater. Sci. Eng. B, vol. 162, no. 1, pp. 64–67, May 2009. ASTM D638, “D638: Standard Test Method for Tensile Properties of Plastics,” West Conshohocken ASTM Int., 2010. D. ASTM, “5930-01. Standard test method for thermal conductivity of plastics by means of a transient line-source technique,” in American Society for Testing and Materials, 2002. Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (214 páginas) : ilustraciones, figuras, tablas. application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ingeniería Tunja Doctorado en Ingeniería y Ciencia de los Materiales |
spellingShingle | Residuos industriales Productos de residuos Magnetita Ciencia de los materiales Gomas y resinas Revestimientos protectores Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas Lara González, Luis Angel Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title | Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title_full | Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title_fullStr | Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title_full_unstemmed | Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title_short | Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita |
title_sort | diseno y caracterizacion de un material compuesto a base resina de poliester y polvos de magnetita |
topic | Residuos industriales Productos de residuos Magnetita Ciencia de los materiales Gomas y resinas Revestimientos protectores Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas |
url | http://repositorio.uptc.edu.co/handle/001/3692 |
work_keys_str_mv | AT laragonzalezluisangel disenoycaracterizaciondeunmaterialcompuestoabaseresinadepoliesterypolvosdemagnetita |