Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados

Spa: El auge de la construcción de grandes obras de ingeniería ha impulsado la demanda del acero, lo que ha generado un incremento en la producción de residuos siderúrgicos, situación que causa problemas ambientales debido a su acumulación y no disposición adecuada. Igualmente, la explotación de rec...

Full description

Bibliographic Details
Main Author: Ochoa Díaz, Ricardo
Other Authors: López Díaz, Alfonso
Format: Trabajo de grado - Doctorado
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2021
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/3693
_version_ 1801705874158256128
author Ochoa Díaz, Ricardo
author2 López Díaz, Alfonso
author_facet López Díaz, Alfonso
Ochoa Díaz, Ricardo
author_sort Ochoa Díaz, Ricardo
collection DSpace
description Spa: El auge de la construcción de grandes obras de ingeniería ha impulsado la demanda del acero, lo que ha generado un incremento en la producción de residuos siderúrgicos, situación que causa problemas ambientales debido a su acumulación y no disposición adecuada. Igualmente, la explotación de recursos naturales no renovables como los agregados pétreos están generando deterioro en el medio ambiente; si a esto le sumamos que las regulaciones ambientales para la explotación de estos materiales no renovables son cada vez más estrictas generando incremento significativo en los costos de producción. En consecuencia, esto lleva a un cambio de paradigma: utilizar materiales no convencionales y emplear técnicas de reciclajes de los pavimentos existentes. El uso de residuos industriales en diferentes procesos debe estar enfocado hacia el desarrollo sostenible y la protección del medio ambiente. Durante el proceso de la fabricación de acero se producen diferentes residuos entre los cuales se encuentran la escoria de horno al oxigeno (BOF), escoria de horno de arco eléctrico (EAF) y polvo de alto horno (BFD). Esta investigación analiza la conveniencia técnica del uso de la escoria BOF y escoria EAF como agregado grueso y estudia la alternativa del uso de BFD como agregado fino, para fabricar mezclas asfálticas en caliente para pavimentos, como una alternativa para mitigar los problemas ambientales derivados de la acumulación de residuos siderúrgicos y de la explotación de materiales no renovables, como la grava y la arena. Para lograr el objetivo, se analizaron once tipos de mezclas asfálticas, una mezcla con materiales convencionales y diez mezclas sustituyendo parcial (50%) y totalmente (100%) el agregado grueso por escoria BOF y escoria EAF y el agregado fino por BFD. El diseño de las mezclas se realizó con la metodología Ramcodes, la cual se basa en el principio del polígono de vacíos. Mediante ensayos se evaluaron las características del diseño preliminar y verificaron las propiedades de desempeño de cada una de las mezclas. También se estudia y analiza la posibilidad de modificar el cemento asfáltico con polvo de escoria de horno de arco eléctrico (EAFD), Para lo cual se realiza el estudio reológico añadiendo 3%, 6% y 10% de EAFD y se compara con los resultados del cemento asfáltico base. Se realizan los ensayos con el reómetro de corte dinámico DSR para determinar los parámetros G* y δ en los cementos asfáltico originales, envejecidos en el horno rotatorio de película delgada (RTFO) y en el horno de envejecimiento a presión (PAV). También se realiza el ensayo de recuperación elástica a diferentes esfuerzos MSCR, el cual mide las propiedades viscoelásticas del cemento asfáltico envejecido a corto plazo en RTFO. Los resultados de este estudio confirman el uso de escoria BOF y escoria EAF como agregado grueso e indican la factibilidad del uso de BFD como agregado fino, para reemplazar parcialmente los agregados convencionales, en la fabricación de concretos asfálticos para uso en carreteras. Respecto a las propiedades mecánicas, las mezclas cumplen con los requerimientos del INVIAS para un nivel de tránsito NT-3, como son estabilidad, flujo y propiedades volumétricas. Asimismo, las propiedades de desempeño (susceptibilidad a la humedad, susceptibilidad a la deformación permanente, módulo resiliente y fatiga) presentaron un buen comportamiento.
format Trabajo de grado - Doctorado
id repositorio.uptc.edu.co-001-3693
institution Repositorio Institucional UPTC
language spa
publishDate 2021
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-36932023-03-27T15:51:18Z Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados Ochoa Díaz, Ricardo López Díaz, Alfonso Conversión de residuos Productos de residuos Residuos industriales Escorias Agregados (Materiales de construcción) Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas Hormigón asfáltico Spa: El auge de la construcción de grandes obras de ingeniería ha impulsado la demanda del acero, lo que ha generado un incremento en la producción de residuos siderúrgicos, situación que causa problemas ambientales debido a su acumulación y no disposición adecuada. Igualmente, la explotación de recursos naturales no renovables como los agregados pétreos están generando deterioro en el medio ambiente; si a esto le sumamos que las regulaciones ambientales para la explotación de estos materiales no renovables son cada vez más estrictas generando incremento significativo en los costos de producción. En consecuencia, esto lleva a un cambio de paradigma: utilizar materiales no convencionales y emplear técnicas de reciclajes de los pavimentos existentes. El uso de residuos industriales en diferentes procesos debe estar enfocado hacia el desarrollo sostenible y la protección del medio ambiente. Durante el proceso de la fabricación de acero se producen diferentes residuos entre los cuales se encuentran la escoria de horno al oxigeno (BOF), escoria de horno de arco eléctrico (EAF) y polvo de alto horno (BFD). Esta investigación analiza la conveniencia técnica del uso de la escoria BOF y escoria EAF como agregado grueso y estudia la alternativa del uso de BFD como agregado fino, para fabricar mezclas asfálticas en caliente para pavimentos, como una alternativa para mitigar los problemas ambientales derivados de la acumulación de residuos siderúrgicos y de la explotación de materiales no renovables, como la grava y la arena. Para lograr el objetivo, se analizaron once tipos de mezclas asfálticas, una mezcla con materiales convencionales y diez mezclas sustituyendo parcial (50%) y totalmente (100%) el agregado grueso por escoria BOF y escoria EAF y el agregado fino por BFD. El diseño de las mezclas se realizó con la metodología Ramcodes, la cual se basa en el principio del polígono de vacíos. Mediante ensayos se evaluaron las características del diseño preliminar y verificaron las propiedades de desempeño de cada una de las mezclas. También se estudia y analiza la posibilidad de modificar el cemento asfáltico con polvo de escoria de horno de arco eléctrico (EAFD), Para lo cual se realiza el estudio reológico añadiendo 3%, 6% y 10% de EAFD y se compara con los resultados del cemento asfáltico base. Se realizan los ensayos con el reómetro de corte dinámico DSR para determinar los parámetros G* y δ en los cementos asfáltico originales, envejecidos en el horno rotatorio de película delgada (RTFO) y en el horno de envejecimiento a presión (PAV). También se realiza el ensayo de recuperación elástica a diferentes esfuerzos MSCR, el cual mide las propiedades viscoelásticas del cemento asfáltico envejecido a corto plazo en RTFO. Los resultados de este estudio confirman el uso de escoria BOF y escoria EAF como agregado grueso e indican la factibilidad del uso de BFD como agregado fino, para reemplazar parcialmente los agregados convencionales, en la fabricación de concretos asfálticos para uso en carreteras. Respecto a las propiedades mecánicas, las mezclas cumplen con los requerimientos del INVIAS para un nivel de tránsito NT-3, como son estabilidad, flujo y propiedades volumétricas. Asimismo, las propiedades de desempeño (susceptibilidad a la humedad, susceptibilidad a la deformación permanente, módulo resiliente y fatiga) presentaron un buen comportamiento. Doctorado Doctorado en Ingeniería y Ciencia de los Materiales 2021-08-20T14:46:50Z 2021-08-20T14:46:50Z 2019 Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TD http://purl.org/coar/version/c_970fb48d4fbd8a85 Ochoa Díaz, R. (2019). Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados. (Tesis doctoral). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3693 http://repositorio.uptc.edu.co/handle/001/3693 spa AASHTO. (1997). Standard Method of Test for Resistance to Plastic Flou of Aspahlt Mixture Using Marshall Apparatus. AASHTO. (2014). AASHTO T-350-14 Standard Method of test for Multiple Stress Creep Recovery (MSCR) test of Asphalt Binder using a Dynamic Shear Rheometer (DSR). AASHTO, A. A. of S. H. and T. O. (1993). Guide for Design of Pavement Structures. Washington DC. Acosta, Y. O. (2018). Producción Escoria EAF en Diaco. In Entrevista. Tuta Adams, W., & Mueller, H. (1982). The steel industry. The Structure of American Industry, 74– 125. Adegoloye, G., Beaucour, A. L., Ortola, S., & Noumowe, A. (2016). Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Construction and Building Materials, 115, 171–178. https://doi.org/10.1016/j.conbuildmat.2016.04.036 AENOR, A. E. de N. y certificación. (2012). Mezclas bituminosas. Métodos de ensayo para mezclas bituminosas en caliente. Parte 26: Rigidez (No. UNE-EN 12697-26). madrid. Aguilar Moya, J. P. (2002). CARACTERIZACIÓN DEL DAÑO POR HUMEDAD EN MEZCLAS ASFÁLTICAS. Construyendo Caminos/ Revista Especializada En Ingeniería de Pavimentos, 54–56. Retrieved from www.construyendocaminos.pe Airey, G. D. (2003). State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. International Journal of Pavement Engineering, 4(3), 165–176. https://doi.org/10.1080/1029843042000198568 Al-Khateeb, G. G., & Al-Akhras, N. M. (2011). Properties of Portland cement-modified asphalt binder using Superpave tests. Construction and Building Materials, 25(2), 926–932. https://doi.org/10.1016/j.conbuildmat.2010.06.091 Ameri, M., & Behnood, A. (2012). Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Construction and Building Materials, 26(1), 475–480. https://doi.org/10.1016/j.conbuildmat.2011.06.047 ASTM D 4123. (1995). Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous. Annual Book of American Society for Testing Materiasl ASTM Standards, 82(Reapproved), 2–5. https://doi.org/10.1520/D4123-82R95 Autelitano, F., & Giuliani, F. (2016). Electric arc furnace slags in cement-treated materials for road construction: Mechanical and durability properties. Construction and Building Materials, 113, 280–289. https://doi.org/10.1016/j.conbuildmat.2016.03.054 Ayala, M. I. Y., & Anguas, P. G. (2016). Efecto de la Temperatura en la Evaluación de la Fatiga en Ligantes Asfálticos. Revista Infraestructura Vial - LanammeUCR, 5–13. Aziz, M. M. A., Hainin, M. R., Yaacob, H., Ali, Z., Chang, F.-L., & Adnan, A. M. (2014). Characterisation and utilisation of steel slag for the construction of roads and highways. Materials Research Innovations, 18(sup6), S6-255-S6-259. https://doi.org/10.1179/1432891714Z.000000000967 Bansal, S., Kumar Misra, A., & Bajpai, P. (2017). Evaluation of modified bituminous concrete mix developed using rubber and plastic waste materials. International Journal of Sustainable Built Environment, 6(2), 442–448. https://doi.org/10.1016/j.ijsbe.2017.07.009 Barreto Bernal, P. C., Gutiérrez Molina, O., & Lara Rodríguez, J. S. (2014). La reconversión industrial de la siderúrgica integrada en Colombia. Estudios Gerenciales, 30(133), 451–460. https://doi.org/10.1016/j.estger.2014.05.001 Belmonte Sánchez, A. F. (2009). Análisis de la reutilización de residuos procedentes de la industria de Silestone en la fabricación de mezclas Bituminosas. Universidad de Granada. Benedetto, H., Roche, C., Baaj, H., Pronk, a., & Lundström, R. (2004). Fatigue of bituminous mixtures. Materials and Structures, 37(3), 202–216. https://doi.org/10.1007/BF02481620 Bhasin, A., Castelo Branco, V. T., Masad, E., & Little, D. N. (2009). Quantitative Comparison of Energy Methods to Characterize Fatigue in Asphalt Materials. Journal of Materials in Civil Engineering, 21(2), 83–92. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:2(83) INVIAS. (2013c). Gravedad específica bulk y densidad de mezclas asfálticas compactadas no absorbentes empleando especímenes saturados y superficialmente secos. Bogotá. Pastas, C. (2017). Proceso Alto Horno. In Entrevista (p. Departamento Alto Horno, Acerías Paz del Río S.A.). Belencito Bianchetto, H. D., Asurmendi, A. I., & Soengas, C. (2011). El “Grado de comportamiento funcional”(GCF) de los ligantes asfálticos. In XVI CILA, Congrso Ibero-Latinoamericano de Asfalto (pp. 1–12). Rio de Janeiro Brazil. Borges, C. & F. (2004). Estabilozacao e viabilidade técnica da utilizacao de escórias de aciaria elétrica. Ambiente Construido, 4, 57–81. Brovelli, C., Crispino, M., Pais, J., & Pereira, P. (2015). Using polymers to improve the rutting resistance of asphalt concrete. Construction and Building Materials, 77, 117–123. https://doi.org/10.1016/j.conbuildmat.2014.12.060 Bulei, C., Todor, M. P., Heput, T., & Kiss, I. (2018). Directions for material recovery of used tires and their use in the production of new products intended for the industry of civil construction and pavements. IOP Conference Series: Materials Science and Engineering, 294, 12064. https://doi.org/10.1088/1757-899X/294/1/012064 Capellán-Pérez, I., Arto, I., Polanco-Martínez, J. M., González-Eguino, M., & Neumann, M. B. (2016). Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ. Sci., 9(8), 2482–2496. https://doi.org/10.1039/C6EE01008C Caro, S., Diaz, A., Rojas, D., & Nuñez, H. (2014). A micromechanical model to evaluate the impact of air void content and connectivity in the oxidation of asphalt mixtures. Construction and Building Materials, 61, 181–190. https://doi.org/10.1016/j.conbuildmat.2014.03.013 Carpenter, S., Ghuzlan, K., & Shen, S. (2003). Fatigue Endurance Limit for Highway and Airport Pavements. Transportation Research Record: Journal of the Transportation Research Board, 1832(October 2014), 131–138. https://doi.org/10.3141/1832-16 Carpenter, S., & Shen, S. (2006). Dissipated Energy Approach to Study Hot-Mix Asphalt Healing in Fatigue. Transportation Research Record: Journal of the Transportation Research Board, 1970(October), 178–185. https://doi.org/10.3141/1970-21 Carvalho, S. Z., Vernilli, F., Almeida, B., Demarco, M., & Silva, S. N. (2017). The recycling effect of BOF slag in the portland cement properties. Resources, Conservation and Recycling, 127(June), 216–220. https://doi.org/10.1016/j.resconrec.2017.08.021 Castro, W. A., Rondón, H. A., & Barrero Calixto, J. C. (2016). Evaluación de las propiedades reológicas y térmicas de un asfalto convencional y uno modificado con un desecho de PEBD. Ingeniería, ISSN-E 0121-750X, Vol. 21, No . 1, 2016, 21(1), 3. https://doi.org/10.14483/udistrital.jour.reving.2016.1.a01 Peiwen, H., & Dengliang, Z. (1997). The effect of aggregate alkalinity on water stability of asphalt mixturesle. JOURNAL OF CHONGQING JIAOTONG UNIVERSITY, 16(1), 80–85. Retrieved from http://worldcat.org/issn/10074112 INVIAS. (2013d). gravedad específica máxima de mezclas asfálticas para pavimentos. Bogotá Chaves Palacios, J. (2004). Desarrollo Tecnológico En La Primera Revolución Industrial. Norba. Revista de Historia, 17, 213–375 Chen, J. S., & Wei, S. H. (2016). Engineering properties and performance of asphalt mixtures incorporating steel slag. Construction and Building Materials, 128, 148–153. https://doi.org/10.1016/j.conbuildmat.2016.10.027 Chen, Z., Wu, S., Wen, J., Zhao, M., Yi, M., & Wan, J. (2015). Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture. Construction and Building Materials, 93, 911–918. https://doi.org/10.1016/j.conbuildmat.2015.05.070 Chen, Z., Xie, J., Xiao, Y., Chen, J., & Wu, S. (2014). Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Construction and Building Materials, 64(July 2016), 60–66. https://doi.org/10.1016/j.conbuildmat.2014.04.074 Cong, P., Wang, J., Li, K., & Chen, S. (2012). Physical and rheological properties of asphalt binders containing various antiag Cuchi, A & Sangrera, A. (2007). Reutilización y reciclaje de los residuos del sector de la Construcción. Ambienta, 59–68. Das, B., Prakash, S., Reddy, P. S. R., Biswal, S. K., Mohapatra, B. K., & Misra, V. N. (2002). Effective Utilization of Blast Furnace Flue Dust of Integrated Steel Plants, 2(2), 61–68. Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008 Delgado Alamilla, H., Garnica Anguas, P., Villatoro Mendez, G. M., & Rodríguez Oropeza, G. (2006). Influencia de la granulometría en las propiedades volumétricas de la mezcla asfáltica, (299), 99 Pérez, G. (2017). Metodología Marshall para diseño de mezclas asfálticas, Apuntes de Clase. Tunja Delgado Salazar, J. (2011). Guía para la realización de ensayos y clasificación de asfaltos, emulsiones asfálticas y asfaltos rebajados según el Reglamento Técnico Centroamericano. Metodos Y Materiales LanammeUCR, 1, 25–38. Ameri, M., Hesami, S., & Goli, H. (2013). Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction and Building Materials, 49, 611–617. https://doi.org/10.1016/j.conbuildmat.2013.08.034 Delvasto, P., Ibanez Aldao, B., & Sandoval Ravotti, D. (2011). Characterization of Electric Arc Furnace Steel Dust Generated in Venezuela and Preliminary Assessment of Its Leachability With Diluted Organic Acids. Dyna-Colombia, 78(169), 221–229. Diab, A., & You, Z. (2017). Small and large strain rheological characterizations of polymer- and crumb rubber-modified asphalt binders. Construction and Building Materials, 144, 168– 177. https://doi.org/10.1016/j.conbuildmat.2017.03.175 Ding, Z., Zhu, M., Tam, V. W. Y., Yi, G., & Tran, C. N. N. (2018). A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages. Journal of Cleaner Production, 176, 676–692. https://doi.org/10.1016/j.jclepro.2017.12.101 Dougan, C. E., Stephens, J. E., Mahoney, J., & Hansen, G. (2003). Dynamic Modulus Test Protocol - Problems and Solutions. FHWA Report. Drobíková, K., Plachá, D., Motyka, O., Gabor, R., Kutláková, K. M., Vallová, S., & Seidlerová, J. (2016). Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel. Waste Management, 48, 471–477. https://doi.org/10.1016/j.wasman.2015.11.047 EAPA. (2016). Asphalt in figures 2015. European Asphalt Pavement Association, 1–9. Elizondo, F., Badilla, G., & Ulloa, Á. (2008). Predicción de módulos resilientes en mezclas asfálticas mediante el modelo de Witczak. Revista Infraestructura Vial, (19), 40–50. Elizondo Arrita, F., Salazar Delgado, J., & Villegas Villegas, E. (2013). Análisis Reológico De Asfaltos Modificados, 169–178. Poh, H. Y., Ghataora, G. S., & Ghazireh, N. (2006). Soil Stabilization Using Basic Oxygen Steel Slag Fines, (April), 229–240. Eugene Avallone, Theodore Baumeister, A. S. (2006). Iron and steel 6.2. Marks’ Standard Handbook for Mechanical Engineers, 1–1800. Fakhri, M., & Ahmadi, A. (2017a). Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles. Construction and Building Materials, 157, 748–756. https://doi.org/10.1016/j.conbuildmat.2017.09.116 INVIAS. (2013e). Muestreo de agregados para construcción de carreteras. Bogotá. Retrieved from www.invias.gov.co Fakhri, M., & Ahmadi, A. (2017b). Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Construction and Building Materials, 147, 630– 638. https://doi.org/10.1016/j.conbuildmat.2017.04.117 Farigua, H. (2017). Proceso Acería. In Entrevista (p. Ingeniero Proceso Acería, Acerías Paz del Río S.A.). Fomento, M., Rural, M. medio ambiente y, & CEDEX. (2011). Ficha técnica escorias de horno de arco eléctrico. Cedex, 2.3, 1–19. Retrieved from http://www.cedex.es/NR/rdonlyres/22980D5E-377B-4697-AEFECE897A68963D/119858/ESCORIASDEACERIADEHORNODEARCOELECTRICO.pdf Franco, E. G., González, H. F., & Hernández, D. a. (2010). Integrated production and distribution planning for an industrial conglomerate. Planificación Integrada de Producción Y Distribución Para Un Conglomerado Industrial, (53), 88–105. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0- 77955652384&partnerID=40&md5=8771c4b91ca789911adb80ae955d1b2a Fuente-Alonso, J. A., Ortega-López, V., Skaf, M., Aragón, Á., & San-José, J. T. (2017). Performance of fiber-reinforced EAF slag concrete for use in pavements. Construction and Building Materials, 149, 629–638. https://doi.org/10.1016/j.conbuildmat.2017.05.174 Gamica, P., Delgado, H., Gómez, J., Romero, S., & Alarcón, H. (2004). Aspectos del diseño volumétrico de mezclas asfálticas. Secretaría De Comunicaciones Y Transportes. Ciudad De Mexico. García Salas, J. L. (2014). Empleo de residuos de concreto y demolición (RCD) enla construcción de carpetas asfálticas. Instituto Politécnico Nacional-México Portugal, A. C. X., Lucena, L. C. de F. L., Lucena, A. E. de F. L., Costa, D. B., & Lima, K. A. de. (2017). Rheological properties of asphalt binders prepared with maize oil. Construction and Building Materials, 152, 1015–1026. https://doi.org/10.1016/j.conbuildmat.2017.07.077 Garnica, A. P., Flores, F. M., & Alamilla, D. H. (2005). Caracterización geomecánica de mezclas asfálticas. Instituto Mexicano Del Transporte, (267), 105. Garnica Amguas, P., Delgado Alamilla, H., & Sandoval Sandoval, C. (2005). Análisis comparativo de los métodos de Marshall y Superpave para compactación de mezclas asfálticas, (271), 62. Retrieved from http://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt271.pdf Ghosh, P. (2011). Polymers in Wastes and their Environmental Impact. Polymer Science and Technology- Access Engineering, 3. INVIAS. (2013f). Normas para ensayos de materiales para carreteras. Bogotá Ghuzlan, K. A., & Carpenter, S. H. (2006). Fatigue damage analysis in asphalt concrete mixtures using the dissipated energy approach. Canadian Journal of Civil Engineering, 33(7), 890– 901. https://doi.org/10.1139/l06-032 Ghuzlan, K., & Carpenter, S. (2000). Energy-Derived, Damage-Based Failure Criterion for Tatigue Testing. Transportation Research Record: Journal of the Transportation Research Board, 1723(1), 141–149. https://doi.org/10.3141/1723-18 Gökalp, İ., Uz, V. E., Saltan, M., & Tutumluer, E. (2018). Technical and environmental evaluation of metallurgical slags as aggregate for sustainable pavement layer applications. Transportation Geotechnics, 14, 61–69. https://doi.org/10.1016/j.trgeo.2017.10.003 Gómez, C. I. S. (2000). Problemática y gestión de residuos. Innovar, (15), 41. González, O. (2018). Producción residuos en Acerías Paz del Río S.A. In Entrevista. Bogotá. Gupta, S., Sahajwalla, V., Burgo, J., Chaubal, P., & Youmans, T. (2005). Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 36(3), 385–394. https://doi.org/10.1007/s11663-005-0067-3 Pronk, A. C. (1997). Comparison of 2 and 4 point fatigue tests and healing in 4 point dynamic bending test based on the dissipated energy concept. Eighth International Conference on Asphalt Pavements, II, 987–994. Gutiérrez-junco, O. J., Pineda-triana, Y., & Vera-lópez, E. (2015). Efecto de la incorporación de ceniza volante y escoria de horno alto en el comportamiento electroquímico de concretos de cemento comercial, 51(4). Harman, T., D’Angelo, J., & Bukowski, J. (2002). Superpave Asphalt Mixture Design Workshop. US Department of Transportation, Federal Highway Administration, (90). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Superpave+Asphalt+Mi xture+Design+Workshop+Workbook#0 Hassan, H. F., Al-Nuaimi, A., Al-Oraimi, S., & Jafar, T. M. A. (2008). Development of asphalt binder performance grades for Omani climate. Construction and Building Materials, 22(8), 1684–1690. https://doi.org/10.1016/j.conbuildmat.2007.06.016 Hernández, R., Limón, P., Sandoval, I., & Cremades, I. (2016). Análisis de la susceptibilidad a la humedad de varios tipos de mezclas asfálticas mediante el módulo dinámico. In ExpoAsfalto 2017. Cancún: Congreso Mexicano del Asfalto INVIAS. (2013g). Penetración de los materiales bituminosos. Bogotá. Retrieved from www.invias.gov.co Hernández, V. R., & Marin, J. A. A. (2014). Evolución de las teorías de explotación de recursos naturales: Hacia la creación de una nueva ética mundial. Luna Azul, (39), 291–313. https://doi.org/10.17151/luaz.2014.39.17 Higuera, C. (2011). Nociones sibre métodos de diseño de estructuras de pavimentos para carreteras. (U. P. y T. de Colombia, Ed.). Hirsch, R. L. (2008). Mitigation of maximum world oil production: Shortage scenarios. Energy Policy, 36(2), 881–889. https://doi.org/10.1016/j.enpol.2007.11.009 Hosseinzadeh, N., Rezaei, M. J., & Hosseini, S. M. (2016). Investigation and performance improvement of hot mix asphalt concrete containing EAF slag. International Journal of Engineering and Technology, 8(4), 260–264. https://doi.org/10.7763/IJET.2016.V8.895 Howson, J., Masad, E., Bhasin, A., Little, D., & Lytton, R. (2011). Comprehensive analysis of surface free energy of asphalts and aggregates and the effects of changes in pH. Construction and Building Materials, 25(5), 2554–2564. https://doi.org/10.1016/j.conbuildmat.2010.11.098 Pronk, A. C., & Hopman, P. C. (1991). Energy Dissipation: The Leading factor of fatigue. Highway Research Sharing the Benefits, 17, 255–267. https://doi.org/http://worldcat.org/isbn/0727716352 Hu, J., Liu, P., Wang, D., Oeser, M., & Tan, Y. (2016). Investigation on fatigue damage of asphalt mixture with different air-voids using microstructural analysis. Construction and Building Materials, 125, 936–945. https://doi.org/10.1016/j.conbuildmat.2016.08.138 INVIAS. (2013h). Punto de ablandamiento de materiales bituminosos (Aparato anillo y bola). Bogotá. INVIAS. (2013i). Reducción de muestras de agregado por cuarteo. Bogotá. Retrieved from www.invias.gov.co INVIAS. (2013j). Suministro de Cemento Asfáltico. Artículo 410-13. Bogotá. Retrieved from www.invias.gov.co Issouribehere, P., Issouribeher, G., & Barbera, G. (n.d.). Aspectos de calidad de servicio en hornos de arco electrico como cargas en los sistemas de distribucion, 75. Jitsangiam, P., Chindaprasirt, P., & Nikraz, H. (2013). An evaluation of the suitability of SUPERPAVE and Marshall asphalt mix designs as they relate to Thailand’s climatic conditions. Construction and Building Materials, 40, 961–970. https://doi.org/10.1016/j.conbuildmat.2012.11.011 Josephia, R., & Ossa, A. (2017). Determinación de la vida a fatiga de un concreto asfáltico tibio mediante diferentes enfoques. Congreso Mexicano Del Asfalto, (x), 1–15. Juckes, L. M. (2017). The volume stability of modern steelmaking slags, 9553(January). https://doi.org/10.1179/03719550322500370 Amoussou, R. I. H. D. T., Tanoue, H., Sasaki, M., & Shigeishi, M. (2016). Hydrothermal recovery of asphalt from asphalt concrete. Construction and Building Materials, 125, 1196–1204. https://doi.org/10.1016/j.conbuildmat.2016.07.129 Kambole, C., Paige-Green, P., Kupolati, W. K., Ndambuki, J. M., & Adeboje, A. O. (2017). Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials, 148, 618–631. https://doi.org/10.1016/j.conbuildmat.2017.05.036 Rath, S. S., Srinivas, D., Kumar, S., & Biswal, S. K. (2018). Characterization vis-á-vis utilization of blast furnace flue dust in the roast reduction of banded iron ore. Process Safety and Environmental Protection, 117, 232–244. https://doi.org/10.1016/j.psep.2018.05.007 Kandhal, P. S., & L.A. Cooley, J. (2001). NCHRP REPORT 464 - The Restricted Zone In The Superpave Aggregate Gradation Specfification Kavussi, A., & Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, 72, 158–166. https://doi.org/10.1016/j.conbuildmat.2014.08.052 Kavussi, A., Qazizadeh, M. J., & Hassani, A. (2016). Fatigue Behavior Analysis of Asphalt Mixes Containing Electric Arc Furnace ( EAF ) Steel Slag, 1(2015), 74–86. Khan, I. M., Kabir, S., Alhussain, M. A., & Almansoor, F. F. (2016). Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Engineering, 145, 1557–1564. https://doi.org/10.1016/j.proeng.2016.04.196 Khedaywi, T. S. (2014). Study on utilising waste toner in asphalt cement. Road Materials and Pavement Design, 15(2), 446–454. https://doi.org/10.1080/14680629.2013.876925 Kim, D., Norouzi, A., Kass, S., Liske, T., & Kim, Y. R. (2017). Mechanistic performance evaluation of pavement sections containing RAP and WMA additives in Manitoba. Construction and Building Materials, 133, 39–50. https://doi.org/10.1016/j.conbuildmat.2016.12.035 Kong, D., Chen, M., Xie, J., Zhao, M., & Yang, C. (2019). Geometric Characteristics of BOF Slag Coarse Aggregate and its Influence on Asphalt Concrete. Materials, 12(5), 741. https://doi.org/10.3390/ma12050741 Kumlai, S., Jitsangiam, P., & Nikraz, H. (2014). Comparison Between Resilient Modulus and Dynamic Modulus of Western Australian Hot-Mix Asphalt Pavement. 26th ARRB Conference – Research Driving Efficiency, 7, 16 Lachance-Tremblay, É., Vaillancourt, M., & Perraton, D. (2016). Evaluation of the impact of recycled glass on asphalt mixture performances. Road Materials and Pavement Design, 17(3), 600–618. https://doi.org/10.1080/14680629.2015.1103778 Anderson, R. M. (2011). The Multiple-Stress Creep-Recovery (MSCR) test and Specification. Asphalt Institute. Reyes, F. A., & Figueroa, A. S. (2016). Análisis de la susceptibilidad al daño por humedad de una mezcla asfáltica a partir del ensayo mist y del programa ipas 2d ®. Revista Infraestructura Vial - LanammeUCR, 17(2215–3705), 31–39. Leandro, R. P., Vasconcelos, K. L., & Bernucci, L. L. B. (2017). Evaluation of the laboratory compaction method on the air voids and the mechanical behavior of hot mix asphalt. Construction and Building Materials, 156, 424–434. https://doi.org/10.1016/j.conbuildmat.2017.08.178 Leng, Z., Al-Qadi, I., Shangguan, P., & Son, S. (2012). Field Application of Ground-Penetrating Radar for Measurement of Asphalt Mixture Density. Transportation Research Record: Journal of the Transportation Research Board, 2304(1), 133–141. https://doi.org/10.3141/2304-15 Leng, Z., Zhang, Z., Zhang, Y., Wang, Y., Yu, H., & Ling, T. (2018). Laboratory evaluation of electromagnetic density gauges for hot-mix asphalt mixture density measurement. Construction and Building Materials, 158, 1055–1064. https://doi.org/10.1016/j.conbuildmat.2017.09.186 Li, C., Chen, Z., Wu, S., Li, B., Xie, J., & Xiao, Y. (2017). Effects of steel slag fillers on the rheological properties of asphalt mastic. Construction and Building Materials, 145, 383– 391. https://doi.org/10.1016/j.conbuildmat.2017.04.034 Li, C., Xiang, X., & Zhou, X. (2015). Investigation of performance of porous open graded steel slag asphalt mixture. Jianzhu Cailiao Xuebao/J. Build. Mater, 18, 168–171. https://doi.org/10.3969/j.issn.1007-9629.2015.01.030 Li, N., Molenaar, A. A. A., Pronk, A. C., Van De Ven, M. F. C., & Wu, S. (2015). Application of the partial healing model on laboratory fatigue results of asphalt mixture. Construction and Building Materials, 95, 842–849. https://doi.org/10.1016/j.conbuildmat.2015.07.127 Li, N., Molenaar, A. A. A., Van De Ven, M. F. C., & Wu, S. (2013). Characterization of fatigue performance of asphalt mixture using a new fatigue analysis approach. Construction and Building Materials, 45, 45–52. https://doi.org/10.1016/j.conbuildmat.2013.04.007 Lin, D. F., Chou, L. H., Wang, Y. K., & Luo, H. L. (2015). Performance evaluation of asphalt concrete test road partially paved with industrial waste - Basic oxygen furnace slag. Construction and Building Materials, 78, 315–323. https://doi.org/10.1016/j.conbuildmat.2014.12.078 Liu, G., Jia, Y., Yang, T., Du, H., Zhang, J., & Zhao, Y. (2017). Fatigue performance evaluation of asphalt mixtures based on energy-controlled loading mode. Construction and Building Materials, 157, 348–356. https://doi.org/10.1016/j.conbuildmat.2017.09.108 Loaiza, A., Cifuentes, S., & Colorado, H. A. (2017). Asphalt modified with superfine electric arc furnace steel dust (EAF dust) with high zinc oxide content. Construction and Building Materials, 145, 538–547. https://doi.org/10.1016/j.conbuildmat.2017.04.050 Asi, I. M. (2007). Evaluating skid resistance of different asphalt concrete mixes. Building and Environment, 42(1), 325–329. https://doi.org/https://doi.org/10.1016/j.buildenv.2005.08.020 Anderson, R. M., Carpenter, S. H., Daniel, J. S., Prowell, B. D., Shen, S., Bhattacharjee, S., … Maghsoodloo, S. (2010). Validating the Fatigue Endurance Limit for Hot Mix Asphalt. https://doi.org/10.17226/14360 Loaiza, A., & Colorado, H. A. (2018). Marshall stability and flow tests for asphalt concrete containing electric arc furnace dust waste with high ZnO contents from the steel making process. Construction and Building Materials, 166, 769–778. https://doi.org/10.1016/j.conbuildmat.2018.02.012 Lobato, N. C. C., Villegas, E. A., & Mansur, M. B. (2015). Management of solid wastes from steelmaking and galvanizing processes: A brief review. Resources, Conservation and Recycling, 102, 49–57. https://doi.org/10.1016/j.resconrec.2015.05.025 López, F. A., Martín, M. I., Pérez, C., López-Delgado, A., & Alguacil, F. J. (2003). Adsorción de metales pesados sobre cascarilla de laminación. Revista de Metalurgia, 39(3), 215–223. https://doi.org/10.3989/revmetalm.2003.v39.i3.332 López Suárez, A. (2017, March). Materiales de construcción jalonan la mineria del país. Portafolio Lu, T. H., Chen, Y. L., Shih, P. H., & Chang, J. E. (2018). Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion. Construction and Building Materials, 167, 768–774. https://doi.org/10.1016/j.conbuildmat.2018.02.102 Lytton, R. L., Zhang, Y., Luo, X., & Luo, R. (2015). The fatigue cracking of asphalt mixtures in tension and compression. Advances in Asphalt Materials: Road and Pavement Construction. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100269-8.00008-8 Ma, X., Ye, L., Qi, C., Yang, D., Shen, X., & Hong, J. (2018). Life cycle assessment and water footprint evaluation of crude steel production: A case study in China. Journal of Environmental Management, 224(July), 10–18. https://doi.org/10.1016/j.jenvman.2018.07.027 Mahieux, P. Y., Aubert, J. E., & Escadeillas, G. (2009). Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Construction and Building Materials, 23(2), 742–747. https://doi.org/10.1016/j.conbuildmat.2008.02.015 Mallela, J., Glover, L. T., Darter, M. I., Quintus, H. Von, Gotlif, A., Stanley, M., & Sadasivam, S. (2009). Guidelines for Implementing NCHRP 1-37A M-E Design Procedures in Ohio: Volume 1 — Summary of Findings , Implementation Plan , and Next Steps, 1(134300). Hu, T., Sun, T., Kou, J., Geng, C., Wang, X., & Chen, C. (2017). Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. International Journal of Mineral Processing, 165, 28–33. https://doi.org/10.1016/j.minpro.2017.06.003 Manso, J. M., Polanco, J. A., Losañez, M., & González, J. J. (2006). Durability of concrete made with EAF slag as aggregate. Cement and Concrete Composites, 28(6), 528–534. https://doi.org/10.1016/j.cemconcomp.2006.02.008 Anderson, R. M., & McGennis, R. (1995). Superpave Asphalt Mixture Design Illustrated Level 1 Lab Methods. Federal Highway Administration, FHWA-SA-95(February), 1–94. Marhual, N. P., Pradhan, N., Mohanta, N. C., Sukla, L. B., & Mishra, B. K. (2011). Dephosphorization of LD slag by phosphorus solubilising bacteria. International Biodeterioration and Biodegradation, 65(3), 404–409. https://doi.org/10.1016/j.ibiod.2011.01.003 Mariño, L. (2016). Materiales de construcción duplicaran producción a 2025. La Republica. Retrieved from https://www.larepublica.co/infraestructura/materiales-de-construccionduplicaran-produccion-a-2025-2368816 Masoudi, S., Abtahi, S. M., & Goli, A. (2017). Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials, 135, 260–266. https://doi.org/10.1016/j.conbuildmat.2016.12.177 McCann, M., & Sebaaly, P. (2001). Quantitative Evaluation of Stripping Potencial in Hot-Mix Asphalt, Using Ultrsonic Energy for Moisture-Accelerated Conditionung. Transportotion Research Record, 1767, 48–59. https://doi.org/https://doi.org/10.3141/1767-07 McGennis, R., Anderson, M., Kennedy, T., & Solaimanian, M. (2012). Background of Superpave Asphalt Mixture Design and Analysis (FHEA-SA-95-003) (Vol. 23). McGennis, R. B., Anderson, R. M., Kennedy, T. W., & Solaimanian, M. (1995). BACKGROUND of SUPERPAVE ASPHALT MIXTURE DESIGN AND ANALYSIS. Fhwa-Sa-95-003, (February), 160. https://doi.org/10.1016/j.resconrec.2005.12.002 McGennis, R. B., Shuler, S., & Bahia, H. U. (1994). Background of SUPERPAVE ASPHALT BINDER TEST METHODS, (July), 91. Mejía, E., Tobón, J. I., Osorno, L., & Osorio, W. (2015). Mineralogical characterization of urban construction and demolition waste : potential use as a nutrient source for degraded soils. The Susteinable Cities, 194, 399–413. https://doi.org/10.2495/SC150351 Roberts, F. L., Kandhal, E., Brown, E., Lee, D., & Kennedy, T. (1996). Hot Mix Asphalt Materials, Mixture Desingn and Construction. (Research and Education Foundation, Ed.) (2nd ed.). Lanham. Mineria, A. N. de. (2018). Así se movieron las cifras de producción de minerales en 2017. Mohseni, A. (1998). LTPP Seasonal Asphalt Concrete (AC) Pavement Temperature Models (Vol. 7). Appiah, J. K., Berko-Boateng, V. N., & Tagbor, T. A. (2017). Use of waste plastic materials for road construction in Ghana. Case Studies in Construction Materials, 6, 1–7. https://doi.org/10.1016/j.cscm.2016.11.001 Molina, C. E. C. (2013). Faculdade de Engenharia do Campus de Guaratinguetá. Efeito Do Condicionamento Ambiental Em Compósitos Soldados de PPS/fibras Continuas, 129. Morea, F., & Zerbino, R. (2018). Improvement of asphalt mixture performance with glass macrofibers. Construction and Building Materials, 164, 113–120. https://doi.org/10.1016/j.conbuildmat.2017.12.198 Moreno, M. Á., & Soares, J. B. (2015). El módulo dinámico de la mezcla bituminosa: importancia, evaluación y estimación. Asfalto Y Pavimentación, V(16), 9–19. https://doi.org/ISSN:2174-2189 Muniandy, R., Aburkaba, E., & Mahdi, L. M. J. (2013). Effect of Mineral Filler Type and Particle Size on Asphalt-Filler Mastic and Stone Mastic Asphalt Laboratory Measured Properties. Australian Journal of Basic and Applied Sciences, 7(11), 475–487. Muniandy, R., Akhir, N. A. C. M., Hassim, S., & Moazami, D. (2014). Laboratory fatigue evaluation of modified and unmodified asphalt binders in Stone Mastic Asphalt mixtures using a newly developed crack meander technique. International Journal of Fatigue, 59, 1– 8. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2013.08.021 Muzaffar Khan, K., Sultan, T., Umar Farooq, Q., Khan, K., & Ali, F. (2013). Development of superpave performance grading map for Pakistan. Life Science Journal, 10(SUPPL. 7), 355– 362. https://doi.org/10.1007/s13398-014-0173-7.2 NCHRP. (2011). A Manual for Design of Hot-Mix Asphalt with Commentary. Washington. https://doi.org/10.17226/14524 Romero, T. (2018). Evaluación comparativa del módulo dinámico y resiliente en las arcillas del exlago Texcoco. Universidad Nacional Autónoma de México. Nega, A., Ghadimi, B., & Nikraz, H. (2015). Developing Master Curves, Binder Viscosity and Predicting Dynamic Modulus of Polymer-Modified Asphalt Mixtures. International Journal of Engineering and Technology, 7(3), 190–197. https://doi.org/10.7763/IJET.2015.V7.790 Ochoa-Díaz, R. (2013). Analysis of the use of coal tar as a binder in bituminous mixtures, using Marshall and Ramcodes methodologies. Journal of Physics: Conference Series, 466(1). https://doi.org/10.1088/1742-6596/466/1/012034 Ochoa Díaz, R. (2012). Diseño de mezclas bituminosas para pavimentos con alquitrán, usando las metodologías Marshall y Ramcodes 1. Respuestas, 17(2), 63–70. https://doi.org/https://doi.org/10.22463/issn.0122-820X Aranda, C., & Clavijo, C. (2014). Análisis del comportamiento físico-mecánico de una mezcla densa en caliente tipo MDC-2 modificada con caucho y cuero 75% y 25% respectivamente. Rumbo Red Universitaria Metropolitana de Bogotá. Omran, M., & Fabritius, T. (2017). Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts. Powder Technology, 308, 47–60. https://doi.org/10.1016/j.powtec.2016.11.049 Ortega, F. (1999). Diccionario de Medio Ambiente y materias afines Ossa, A., García, J. L., & Botero, E. (2016). Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088 Ovalle, G. O. (2016). El papel de las vías secundarias y los caminos vecinales en el desarrollo de Colombia. Revista de Ingeniería; Núm. 44 (2016): Revista de Ingeniería, 20–27. Retrieved from https://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/911 Padilla, A. (2004). Análisis de la resistencia a las deformaciones plásticas de mezclas bituminosas densas de la normativa mexicana mediante el ensayo de pista. Capitulo 4: Deformaciones plásticas en capas de rodadura de pavimentos asfálticos. Universidad Politécnica de Cataluña. Retrieved from https://upcommons.upc.edu/handle/2099.1/3334 Parish, C. M., White, R. M., Lebeau, J. M., & Miller, M. K. (2014). Response of nanostructured ferritic alloys to high-dose heavy ion irradiation. Journal of Nuclear Materials, 445(1–3), 251–260. https://doi.org/10.1016/j.jnucmat.2013.11.002 Rondón,Hugo & Reyes, F. (2016). Pavimentos. Materiales, construcción y diseño. (Ecoe Ediciones Ltda, Ed.) (Primera). Bogotá. Pasandín, A. R., & Pérez, I. (2017). Fatigue performance of bituminous mixtures made with recycled concrete aggregates and waste tire rubber. Construction and Building Materials, 157, 26–33. https://doi.org/10.1016/j.conbuildmat.2017.09.090 Pasetto, M., & Baldo, N. (2010). Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. Journal of Hazardous Materials, 181(1–3), 938–948. https://doi.org/10.1016/j.jhazmat.2010.05.104 Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8), 3458–3468. https://doi.org/10.1016/j.conbuildmat.2011.03.037 Pasetto, M., & Baldo, N. (2017). Dissipated energy analysis of four-point bending test on asphalt concretes made with steel slag and RAP. International Journal of Pavement Research and Technology, 10(5), 446–453. https://doi.org/10.1016/j.ijprt.2017.07.004 Arribas, I., Santamaría, A., Ruiz, E., Ortega-López, V., & Manso, J. M. (2015). Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 90, 68– 79. https://doi.org/10.1016/j.conbuildmat.2015.05.003 Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2017). Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. Journal of Cleaner Production, 166(x), 835–843. https://doi.org/10.1016/j.jclepro.2017.07.212 Rowe, G. M. (1993). Performance of asphalt mixtures in the trapezoidal fatigue test. Asphalt Paving Technology. Retrieved from http://www.abatech.com/documents/1993_Rowe_Perf_of_Asphal_Mixtures_in_the_Trape zoidal_Fatigue_Test_v62p343.pdf Ruuska, J., Sorsa, A., Ollila, S., & Leiviskä, K. (2015). Analysis of splashing in basic oxygen furnace through systematic modelling. IFAC-PapersOnLine, 28(17), 171–176. https://doi.org/10.1016/j.ifacol.2015.10.098 Saha, G., & Biligiri, K. P. (2016). Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction and Building Materials, 105, 103–112. https://doi.org/10.1016/j.conbuildmat.2015.12.046 Saleh, A. M. M., & Trad, M. A. (2011). Generation of asphalt performance grading map for Egypt based on the SUPERPAVETM program. Construction and Building Materials, 25(5), 2248– 2253. https://doi.org/10.1016/j.conbuildmat.2010.11.009 Sánchez-leal, Freddy J., Garnica, P., Gómez, J., & Pérez, N. (2002). Ramcodes: Metodología racional para el análisis de densificación de geomateriales compactados. Publicación Técnica 200, Instituto(0188–7297), 1–48. Sánchez-Leal, F. J. (2007). Gradation Chart for Asphalt Mixes : Development. Journal of Materials in Civil Engineering in Civil Engineering, 19(2), 185–197. https://doi.org/10.1061/?ASCE?0899-1561?2007?19:2?185? Sánchez-Leal, F. J. (2009). Manual de Aplicación - Metodología de Analísis y Diseño de Geomateriales Compactados. (Ramcodes, Ed.) (3rd ed.). Hu, W. tao, Xia, H. wen, Pan, D. ling, Wei, X. lei, Li, J., Dai, X. jie, … Wang, H. jun. (2018). Difference of zinc volatility in diverse carrier minerals: The critical limit of blast furnace dust recycle. Minerals Engineering, 116(August 2017), 24–31. https://doi.org/10.1016/j.mineng.2017.11.001 Asociación Mexicana del Asfalto AC. (2013). Protocolo AMAAC PA-MA 01/2013. Diseño de mezclas asfálticas de granulometría densa de alto desempeño (No. PA-MA 01). Retrieved from www.amaac.org.mx Sánchez-Leal, F. J. (2011). Supertraining Uso exitoso de las Herramientas RAMCODES Sánchez-Leal, F. J. (2018). Diseño acelerado de Mezclas Asfálticas con el Polígono de Vacíos. Metodología Ramcodes. In Curso. Sánchez-Leal, F. J., Anguas, P. G., Larreal, M., & Valdés, D. B. L. (2011). Polyvoids : Analytical Tool for Superpave HMA Design. Journal of Materials in Civil Engineering, 23(8), 1129– 1137. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000275 Sargin, Ş., Saltan, M., Morova, N., Serin, S., & Terzi, S. (2013). Evaluation of rice husk ash as filler in hot mix asphalt concrete. Construction and Building Materials, 48, 390–397. https://doi.org/10.1016/j.conbuildmat.2013.06.029 SCT. (2005). CMT. Caracteristicas de los materiales - Calidad de Materiales Asfalticas Grado PG (No. N-CMT-4-05-004/05). Ciudad De Mexico. Shawabkeh, R. A. (2010). Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy, 104(1), 61–65. https://doi.org/10.1016/j.hydromet.2010.04.014 Shen, D. H., Wu, C. M., & Du, J. C. (2009). Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 23(1), 453–461. https://doi.org/10.1016/j.conbuildmat.2007.11.001 Shen, S., Airey, G. D., Carpenter, S. H., & Huang, H. (2006). A dissipated energy approach to fatigue evaluation. Road Materials and Pavement Design, 7(1), 47–69. https://doi.org/10.1080/14680629.2006.9690026 Shen, S., Chiu, H.-M., & Huang, H. (2010). Characterization of Fatigue and Healing in Asphalt Binders. Journal of Materials in Civil Engineering, 22(9), 846–852. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000080 Huang, L. S., Lin, D. F., Luo, H. L., & Lin, P. C. (2012). Effect of field compaction mode on asphalt mixture concrete with basic oxygen furnace slag. Construction and Building Materials, 34, 16–27. https://doi.org/10.1016/j.conbuildmat.2012.02.008 Sheng, Y., Zhang, B., Yan, Y., Chen, H., Xiong, R., & Geng, J. (2017). Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures. Construction and Building Materials, 141, 289–295. https://doi.org/10.1016/j.conbuildmat.2017.02.141 Asphalt Institute. (1992). Principios de construcción de pavimentos de mezclas asfálticas en caliente "Serie de Manuales No 22 (MS-22S). Shi, X., Cai, L., Xu, W., Fan, J., & Wang, X. (2018). Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. Construction and Building Materials, 161, 705– 714. https://doi.org/10.1016/j.conbuildmat.2017.11.162 Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C., & Dondi, G. (2017). Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Materials and Pavement Design, 0(0), 1–16. https://doi.org/10.1080/14680629.2017.1407818 Siracusa, G., La Rosa, A. D., Siracusa, V., & Trovato, M. (2002). Eco-Compatible Use of Olive Husk as Filler in Thermoplastic Composite. Journal of Polymers and the Environment, 9(4), 157–161. https://doi.org/10.1023/A:1020465305193 Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A., & Ortega-López, V. (2017). EAF slag in asphalt mixes: A brief review of its possible re-use. Resources, Conservation and Recycling, 120, 176–185. https://doi.org/10.1016/j.resconrec.2016.12.009 Sorlini, S., Sanzeni, A., & Rondi, L. (2012). Reuse of steel slag in bituminous paving mixtures. Journal of Hazardous Materials, 209–210, 84–91. https://doi.org/10.1016/j.jhazmat.2011.12.066 Souliman, M., & Zeiada, W. (2012). Assessment of different flexure fatigue failure analysis methods to estimate the number of cycles to failure of asphalt mixtures. Four Point Bending …, 27–34. Retrieved from http://books.google.com/books Stempihar, J., Underwood, S., & Kaloush, K. (2015). Resilient Modulus to Dynamic Modulus Relationship and Pavement Analysis with the Mechanistic- Empirical Pavement Design Guide. National Center of Excellence for Smart Innovations, (April), 1–6. Tan, Y., & Guo, M. (2013). Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction and Building Materials, 47, 254–260. https://doi.org/10.1016/j.conbuildmat.2013.05.067 Iluţiu-Varvara, D. A., Mârza, C. M., Domniţa, F. V., Boca, I. M. S., & Tintelecan, M. (2017). An Assessment of the Metallic Iron Content from Metallurgical Wastes - Essential Factor for Sustainable Development in the Steelmaking Industry. Procedia Engineering, 181, 357– 362. https://doi.org/10.1016/j.proeng.2017.02.401 Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Lidstrom Larsson, M., & Bjorkman, B. (2007). Characteristics of steel slag under different cooling conditions. Waste Management, 27(10), 1335–1344. https://doi.org/10.1016/j.wasman.2006.08.002 Transportation Research Board, S. C. (2005). Superior Performing Asphalt Pavement SUPERPAVE Performance by Design. Asphalt Institute. (1993). Mix Design Methods for Asphalt Concrete and Other Hot-mix Types. (Manual Series No. 2) MS-2. Asphalt Institute: GTH edition. Uzun, S., & Terzi, S. (2012). Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, 31, 284–288. https://doi.org/10.1016/j.conbuildmat.2011.12.093 Vacca-Gomez, H. A., Leon-Neira, M. P., & Ruiz-Valencia, D. M. (2012). Evaluation of the rolling thin film oven aging of the 80-100 asphalt cement in the static and dynamic behavior of asphalt mixture. Ingenieria Y Universidad, 16(0123–2126), 379–396. Vanegas Solís, J. A. (2013). Manual de diseño de mezclas asfálticas en caliente de granulometría densa de alto desempeño con protocolo AMAAC. Instituto Politecnico Nacional, Mexíco. Velázquez, R. T., Villares, H. H., & Zepeda, F. R. (2017). Prueba de desempeño en diferentes mezclas asfálticas. Entretextos, 24(2007–5316), 97–107. Villafuerte Pérez, D. I. (2018). Diseño de mezclas asfálticas elaboradas con concreto asfálticos reciclado y agentes rejuvenecedores. Universidad Nacional Autonoma de México. Waligora, J., Bulteel, D., Degrugilliers, P., Damidot, D., Potdevin, J. L., & Measson, M. (2010). Chemical and mineralogical characterizations of LD converter steel slags: A multianalytical techniques approach. Materials Characterization, 61(1), 39–48. https://doi.org/10.1016/j.matchar.2009.10.004 Wang, Y., Chong, D., & Wen, Y. (2017). Quality verification of polymer-modified asphalt binder used in hot-mix asphalt pavement construction. Construction and Building Materials, 150, 157–166. https://doi.org/10.1016/j.conbuildmat.2017.05.196 Instituto Nacional de Vías, C. (2006). Manual para la inspección visual de pavimentos flexibles. Manual Para La Inspeccion Visual de Pavimentos Flexibles, 212(3456778), 70. Retrieved from http://www.invias.gov.co/index.php/historico-cartelera-virtual/doc_download/974- manual-para-la-inspeccion-visual-de-pavimentos-flexibles Warren, R. S., McGennin, R. B., & Bahia, H. U. (1994). Superpave Asphalt Binder Test Method Overview, 1–53. Wen, H., Wu, S., & Bhusal, S. (2016). Performance Evaluation of Asphalt Mixes Containing Steel Slag Aggregate as a Measure to Resist Studded Tire Wear. Journal of Materials in Civil Engineering, 28(5), 4015191. https://doi.org/http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001475 Xi, J., Xiang, X., & Li, C. (2016). Process Improvement on the Gradation Uniformity of Steel Slag Asphalt Concrete Aggregate. Procedia Environmental Sciences, 31, 627–634. https://doi.org/10.1016/j.proenv.2016.02.115 Asphalt Institute. (2001). Superpave Mix Design Series No. 2 (SP-2). Asphalt Institute Research Center. Xie, J., Chen, J., Wu, S., Lin, J., & Wei, W. (2013). Performance characteristics of asphalt mixture with basic oxygen furnace slag. Construction and Building Materials, 38, 796–803. https://doi.org/10.1016/j.conbuildmat.2012.09.056 Xie, J., Wu, S., Lin, J., Cai, J., Chen, Z., & Wei, W. (2012). Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation. Construction and Building Materials, 36, 467–474. https://doi.org/10.1016/j.conbuildmat.2012.06.023 Xie, J., Wu, S., Zhang, L., Xiao, Y., Liu, Q., Yang, C., & Nie, S. (2017). Material characterization and performance evaluation of asphalt mixture Incorporating basic oxygen furnace slag (BOF) sludge. Construction and Building Materials, 147, 362–370. https://doi.org/10.1016/j.conbuildmat.2017.04.131 Xu, G., Wang, H., & Zhu, H. (2017). Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Construction and Building Materials, 151, 801– 808. https://doi.org/10.1016/j.conbuildmat.2017.06.151 Xu, S., Xiao, F., Amirkhanian, S., & Singh, D. (2017). Moisture characteristics of mixtures with warm mix asphalt technologies – A review. Construction and Building Materials, 142, 148– 161. https://doi.org/10.1016/j.conbuildmat.2017.03.069 Xu, T., Wang, H., Li, Z., & Zhao, Y. (2014). Evaluation of permanent deformation of asphalt mixtures using different laboratory performance tests. Construction and Building Materials, 53, 561–567. https://doi.org/10.1016/j.conbuildmat.2013.12.015 Instituto Tecnológico GeoMinero de España. (1995). Manual de reutilización de residuos de la industria minera, siderometalúrgica y termoeléctrica. Yao, Z., Zhang, J., Gao, F., Liu, S., & Yu, T. (2018). Integrated utilization of recycled crumb rubber and polyethylene for enhancing the performance of modified bitumen. Construction and Building Materials, 170, 217–224. https://doi.org/10.1016/j.conbuildmat.2018.03.080 Yildirim, I. Z., & Prezzi, M. (2011). Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering, 2011. https://doi.org/10.1155/2011/463638 Yu, B., Li, X., Shi, L., & Qian, Y. (2015). Quantifying CO2emission reduction from industrial symbiosis in integrated steel mills in China. Journal of Cleaner Production, 103, 801–810. https://doi.org/10.1016/j.jclepro.2014.08.015 Zakaria, N. M., Hassan, M. K., Ibrahim, A. N. H., Rosyidi, S. A. P., Yusoff, N. I. M., Mohamed, A. A., & Hassan, N. (2018). The use of mixed waste recycled plastic and glass as an aggregate replacement in asphalt mixtures. Jurnal Teknologi, 80(1), 79–88. https://doi.org/10.11113/jt.v80.11147 Asphalt Institute. (2012). Asphalt Binder Testing. Technician’s Manual for Specification Testing of Asphalt Binder (Trird Edition No. MS-25). Zaumanis, M., Mallick, R. B., & Frank, R. (2014). 100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling, 92, 230–245. https://doi.org/10.1016/j.resconrec.2014.07.007 Zeydabadi, B. A., Mowla, D., Shariat, M. H., & Kalajahi, J. F. (1997). Zinc recovery from blast furnace flue dust, 47, 113–125. Zhang, D., Zhang, X., Yang, T., Rao, S., Hu, W., Liu, W., & Chen, L. (2017). Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy, 169, 219–228. https://doi.org/10.1016/j.hydromet.2017.02.003 Zhang, J., Simate, G. S., Hu, X., Souliman, M., & Walubita, L. F. (2017). Impact of recycled asphalt materials on asphalt binder properties and rutting and cracking performance of plantproduced mixtures. Construction and Building Materials, 155, 654–663. https://doi.org/10.1016/j.conbuildmat.2017.08.084 Zhou, F., Scullion, T., & Sun, L. (2004). Verification and modeling of three-stage permanent deformation behaviour of asphalt mixes. Journal of Transportation Engineering, 130(4), 486–494. INVIAS. (2013a). Artículo 450-13 Mezclas asfálticas en caliente de gradación continua. Bogotá. Ziari, H., Nowbakht, S., Rezaei, S., & Mahboob, A. (2015). Laboratory Investigation of Fatigue Characteristics of Asphalt Mixtures with Steel Slag Aggregates, 2015. ASTM. (n.d.-a). Standard test method for bulk specific gravity and density of non-absorptive compacted bituminous mixtures ASTM. (n.d.-b). Standard test method for theoretical maximum specific gravity and density of bituminous paving mixtures ASTM. (2001). Standard practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water. ASTM. (2003). ASTM D36. Standard Test Method for Softening Point of Bitumen (Ring-andBall Apparatus)1 This, 93(Reapproved), 1–3. https://doi.org/10.1520/C0338-93R08.4.1 ASTM. (2004). ASTM D 2872-12e1. Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test), (C), 1–6. https://doi.org/10.1520/D2872 ASTM. (2005a). Section 04-Construction: Volume 04.02 Concrete and Aggregates. West Conshohocken, Pa. ASTM. (2005b). Section 04-Construction: Volume 04.03 Road and Paving Materials. West Conshohocken. Pa ASTM. (2006). ASTM D 5 -97. “Standard Test Method for Penetration of Bituminous Materials”. ASTM International, West Conshohocken, PA, USA., 6–8. ASTM. (2008). ASTM D6521-13. Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)1, i(April), 1–6. https://doi.org/10.1520/D6521- 08.Copyright INVIAS. (2013b). Especificaciones generales de construcción de carreteras. Bogotá. ASTM. (2015). Standard Terminology Relating to Materials for Roads and Pavements. Astm, 4. https://doi.org/10.1520/D0008 Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (206 páginas) : ilustraciones, tablas, figuras. application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ingeniería Tunja Doctorado en Ingeniería y Ciencia de los Materiales
spellingShingle Conversión de residuos
Productos de residuos
Residuos industriales
Escorias
Agregados (Materiales de construcción)
Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas
Hormigón asfáltico
Ochoa Díaz, Ricardo
Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title_full Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title_fullStr Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title_full_unstemmed Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title_short Estudio del comportamiento de concreto asfáltico con residuos siderúrgicos como agregados
title_sort estudio del comportamiento de concreto asfaltico con residuos siderurgicos como agregados
topic Conversión de residuos
Productos de residuos
Residuos industriales
Escorias
Agregados (Materiales de construcción)
Doctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas
Hormigón asfáltico
url http://repositorio.uptc.edu.co/handle/001/3693
work_keys_str_mv AT ochoadiazricardo estudiodelcomportamientodeconcretoasfalticoconresiduossiderurgicoscomoagregados