Resolución de sistemas de ecuaciones polinomiales

Resolver sistemas de ecuaciones polinomiales en varias variables es un problema importante en álgebra computacional, con muchas aplicaciones. Cuando la cantidad de soluciones es infinita, no esta claro qué significa exactamente “resolver”. En esta charla, lo interpretamos como descomponer el conjunt...

Deskribapen osoa

Xehetasun bibliografikoak
Egile nagusia: Laplagne, Santiago Jorge
Formatua: Documento de Conferencia
Hizkuntza:spa
Argitaratua: 2021
Sarrera elektronikoa:http://repositorio.uptc.edu.co/handle/001/7803
Deskribapena
Gaia:Resolver sistemas de ecuaciones polinomiales en varias variables es un problema importante en álgebra computacional, con muchas aplicaciones. Cuando la cantidad de soluciones es infinita, no esta claro qué significa exactamente “resolver”. En esta charla, lo interpretamos como descomponer el conjunto de soluciones en sus componentes irreducibles. Algebraicamente, esto es equivalente a encontrar los primos minimales asociados al ideal generado por los polinomios. Veremos como se puede obtener algorítmicamente esta descomposicion y las herramientas que se necesitan, así como algunas aplicaciones concretas de estos algoritmos en robótica. Palabras clave: ecuaciones polinomiales, primos asociados, Groebner.