Resolución de sistemas de ecuaciones polinomiales

Resolver sistemas de ecuaciones polinomiales en varias variables es un problema importante en álgebra computacional, con muchas aplicaciones. Cuando la cantidad de soluciones es infinita, no esta claro qué significa exactamente “resolver”. En esta charla, lo interpretamos como descomponer el conjunt...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолч: Laplagne, Santiago Jorge
Формат: Documento de Conferencia
Хэл сонгох:spa
Хэвлэсэн: 2021
Онлайн хандалт:http://repositorio.uptc.edu.co/handle/001/7803
Тодорхойлолт
Тойм:Resolver sistemas de ecuaciones polinomiales en varias variables es un problema importante en álgebra computacional, con muchas aplicaciones. Cuando la cantidad de soluciones es infinita, no esta claro qué significa exactamente “resolver”. En esta charla, lo interpretamos como descomponer el conjunto de soluciones en sus componentes irreducibles. Algebraicamente, esto es equivalente a encontrar los primos minimales asociados al ideal generado por los polinomios. Veremos como se puede obtener algorítmicamente esta descomposicion y las herramientas que se necesitan, así como algunas aplicaciones concretas de estos algoritmos en robótica. Palabras clave: ecuaciones polinomiales, primos asociados, Groebner.